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Abstract. Chapter 1 strongly advocates the stochastic back-propagation
method to train neural networks. This is in fact an instance of a
more general technique called stochastic gradient descent (SGD). This
chapter provides background material, explains why SGD is a good
learning algorithm when the training set is large, and provides useful
recommendations.

18.1 Introduction

Chapter 1 strongly advocates the stochastic back-propagation method to train
neural networks. This is in fact an instance of a more general technique called
stochastic gradient descent (SGD). This chapter provides background material,
explains why SGD is a good learning algorithm when the training set is large,
and provides useful recommendations.

18.2 What Is Stochastic Gradient Descent?

Let us first consider a simple supervised learning setup. Each example z is a pair
(x, y) composed of an arbitrary input x and a scalar output y. We consider a loss
function �(ŷ, y) that measures the cost of predicting ŷ when the actual answer is
y, and we choose a family F of functions fw(x) parametrized by a weight vector
w. We seek the function f ∈ F that minimizes the loss Q(z, w) = �(fw(x), y)
averaged on the examples. Although we would like to average over the unknown
distribution dP (z) that embodies the Laws of Nature, we must often settle for
computing the average on a sample z1 . . . zn.

E(f) =

∫
�(f(x), y) dP (z) En(f) =

1

n

n∑

i=1

�(f(xi), yi) (18.1)

The empirical risk En(f) measures the training set performance. The expected
risk E(f) measures the generalization performance, that is, the expected
performance on future examples. The statistical learning theory [25] justifies
minimizing the empirical risk instead of the expected risk when the chosen family
F is sufficiently restrictive.
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18.2.1 Gradient Descent

It has often been proposed (e.g., [18]) to minimize the empirical risk En(fw)
using gradient descent (GD). Each iteration updates the weights w on the basis
of the gradient of En(fw) ,

wt+1 = wt − γ
1

n

n∑

i=1

∇w Q(zi, wt) , (18.2)

where γ is an adequately chosen learning rate. Under sufficient regularity
assumptions, when the initial estimate w0 is close enough to the optimum,
and when the learning rate γ is sufficiently small, this algorithm achieves linear
convergence [6], that is, − log ρ ∼ t, where ρ represents the residual error.1

Much better optimization algorithms can be designed by replacing the scalar
learning rate γ by a positive definite matrix Γt that approaches the inverse of
the Hessian of the cost at the optimum :

wt+1 = wt − Γt
1

n

n∑

i=1

∇w Q(zi, wt) . (18.3)

This second order gradient descent (2GD) is a variant of the well known Newton
algorithm. Under sufficiently optimistic regularity assumptions, and provided
that w0 is sufficiently close to the optimum, second order gradient descent
achieves quadratic convergence. When the cost is quadratic and the scaling
matrix Γ is exact, the algorithm reaches the optimum after a single iteration.
Otherwise, assuming sufficient smoothness, we have − log log ρ ∼ t.

18.2.2 Stochastic Gradient Descent

The stochastic gradient descent (SGD) algorithm is a drastic simplification.
Instead of computing the gradient of En(fw) exactly, each iteration estimates
this gradient on the basis of a single randomly picked example zt :

wt+1 = wt − γt∇wQ(zt, wt) . (18.4)

The stochastic process {wt, t=1, . . . } depends on the examples randomly picked
at each iteration. It is hoped that (18.4) behaves like its expectation (18.2)
despite the noise introduced by this simplified procedure.

Since the stochastic algorithm does not need to remember which examples
were visited during the previous iterations, it can process examples on the fly in
a deployed system. In such a situation, the stochastic gradient descent directly
optimizes the expected risk, since the examples are randomly drawn from the
ground truth distribution.
1 For mostly historical reasons, linear convergence means that the residual error

asymptotically decreases exponentially, and quadratic convergence denotes an even
faster asymptotic convergence. Both convergence rates are considerably faster than
the SGD convergence rates discussed in section 18.2.3.
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Table 18.1. Stochastic gradient algorithms for various learning systems

Loss Stochastic gradient algorithm

Adaline [26]
Qadaline =

1
2

(
y −w�Φ(x)

)2
Features Φ(x) ∈ R

d, Classes y = ±1
w← w + γt

(
yt − w�Φ(xt)

)
Φ(xt)

Perceptron [17]
Qperceptron = max{0,−y w�Φ(x)}
Features Φ(x) ∈ R

d, Classes y = ±1
w← w + γt

{
yt Φ(xt) if yt w�Φ(xt) ≤ 0
0 otherwise

K-Means [12]
Qkmeans = min

k

1
2
(z − wk)

2

Data z ∈ R
d

Centroids w1 . . . wk ∈ R
d

Counts n1 . . . nk ∈ N, initially 0

k∗ = argmink(zt −wk)
2

nk∗ ← nk∗ + 1
wk∗ ← wk∗ + 1

nk∗ (zt −wk∗)

(counts provide optimal learning rates!)

SVM [5]
Qsvm = λw2 +max{0, 1− y w�Φ(x)}
Features Φ(x) ∈ R

d, Classes y = ±1
Hyperparameter λ > 0

w← w − γt
{
λw if ytw�Φ(xt) > 1,
λw − yt Φ(xt) otherwise.

Lasso [23]
Qlasso = λ|w|1 + 1

2

(
y − w�Φ(x)

)2
w = (u1 − v1, . . . , ud − vd)
Features Φ(x) ∈ R

d, Classes y = ±1
Hyperparameter λ > 0

ui ←
[
ui − γt

(
λ− (yt − w�Φ(xt))Φi(xt)

)]
+

vi ←
[
vi − γt

(
λ+ (yt − w�Φ(xt))Φi(xt)

)]
+

with notation [x]+ = max{0, x}.

Table 18.1 illustrates stochastic gradient descent algorithms for a number
of classic machine learning schemes. The stochastic gradient descent for the
Perceptron, for the Adaline, and for k-Means match the algorithms proposed in
the original papers. The SVM and the Lasso were first described with traditional
optimization techniques. Both Qsvm and Qlasso include a regularization term
controlled by the hyper-parameter λ. The K-means algorithm converges to a
local minimum because Qkmeans is nonconvex. On the other hand, the proposed
update rule uses second order learning rates that ensure a fast convergence. The
proposed Lasso algorithm represents each weight as the difference of two positive
variables. Applying the stochastic gradient rule to these variables and enforcing
their positivity leads to sparser solutions.

18.2.3 The Convergence of Stochastic Gradient Descent

The convergence of stochastic gradient descent has been studied extensively
in the stochastic approximation literature. Convergence results usually require
decreasing learning rates satisfying the conditions

∑
t γ

2
t <∞ and

∑
t γt =∞.

The Robbins-Siegmund theorem [16] provides the means to establish almost sure
convergence under surprisingly mild conditions [3], including cases where the loss
function is non smooth.
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The convergence speed of stochastic gradient descent is in fact limited by
the noisy approximation of the true gradient. When the learning rates decrease
too slowly, the variance of the parameter estimate wt decreases equally slowly.
When the learning rates decrease too quickly, the expectation of the parameter
estimate wt takes a very long time to approach the optimum.

– When the Hessian matrix of the cost function at the optimum is strictly
positive definite, the best convergence speed is achieved using learning rates
γt ∼ t−1 (e.g. [14]). The expectation of the residual error then decreases with
similar speed, that is, E(ρ) ∼ t−1. These theoretical convergence rates are
frequently observed in practice.

– When we relax these regularity assumptions, the theory suggests slower
asymptotic convergence rates, typically like E(ρ) ∼ t−1/2 (e.g., [28]). In
practice, the convergence only slows down during the final stage of the
optimization process. This may not matter in practice because one often
stops the optimization before reaching this stage (see section 18.3.1.)

Second order stochastic gradient descent (2SGD) multiplies the gradients by a
positive definite matrix Γt approaching the inverse of the Hessian :

wt+1 = wt − γtΓt∇w Q(zt, wt) . (18.5)

Unfortunately, this modification does not reduce the stochastic noise and
therefore does not significantly improve the variance of wt. Although constants
are improved, the expectation of the residual error still decreases like t−1, that
is, E(ρ) ∼ t−1 at best, (e.g. [1], appendix).

Therefore, as an optimization algorithm, stochastic gradient descent is asymp-
totically much slower than a typical batch algorithm. However, this is not the
whole story. . .

18.3 When to Use Stochastic Gradient Descent?

During the last decade, the data sizes have grown faster than the speed
of processors. In this context, the capabilities of statistical machine learning
methods is limited by the computing time rather than the sample size. The
analysis presented in this section shows that stochastic gradient descent performs
very well in this context.

Use stochastic gradient descent
when training time is the bottleneck.

18.3.1 The Trade-Offs of Large Scale Learning

Let f∗ = argminf E(f) be the best possible prediction function. Since we
seek the prediction function from a parametrized family of functions F , let
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f∗F = argminf∈F E(f) be the best function in this family. Since we optimize
the empirical risk instead of the expected risk, let fn = argminf∈F En(f)
be the empirical optimum. Since this optimization can be costly, let us stop
the algorithm when it reaches a solution f̃n that minimizes the objective
function with a predefined accuracy En(f̃n) < En(fn) + ρ. The excess error
E = E

[
E(f̃n)− E(f∗)

]
can then be decomposed in three terms [2] :

E = E
[
E(f∗

F)− E(f∗)
]

︸ ︷︷ ︸
Eapp

+ E
[
E(fn)− E(f∗

F )
]

︸ ︷︷ ︸
Eest

+ E
[
E(f̃n)− E(fn)

]
︸ ︷︷ ︸

Eopt

. (18.6)

– The approximation error Eapp = E
[
E(f∗F )− E(f∗)

]
measures how closely

functions in F can approximate the optimal solution f∗. The approximation
error can be reduced by choosing a larger family of functions.

– The estimation error Eest = E
[
E(fn)− E(f∗F )

]
measures the effect of

minimizing the empirical risk En(f) instead of the expected risk E(f). The
estimation error can be reduced by choosing a smaller family of functions or
by increasing the size of the training set.

– The optimization error Eopt = E
[
E(f̃n)− E(fn)

]
measures the impact of the

approximate optimization on the expected risk. The optimization error can
be reduced by running the optimizer longer. The additional computing time
depends of course on the family of function and on the size of the training
set.

Given constraints on the maximal computation time Tmax and the maximal
training set size nmax, this decomposition outlines a trade-off involving the size
of the family of functions F , the optimization accuracy ρ, and the number of
examples n effectively processed by the optimization algorithm.

min
F ,ρ,n

E = Eapp + Eest + Eopt subject to
{

n ≤ nmax

T (F , ρ, n) ≤ Tmax
(18.7)

Two cases should be distinguished:

– Small-scale learning problems are first constrained by the maximal number
of examples. Since the computing time is not an issue, we can reduce the
optimization error Eopt to insignificant levels by choosing ρ arbitrarily small,
and we can minimize the estimation error Eest by choosing n = nmax. We
then recover the approximation-estimation trade-off that has been widely
studied in statistics and in learning theory.

– Large-scale learning problems are constrained by the maximal computing
time, usually because the supply of training examples is very large. Approx-
imate optimization can achieve better expected risk because more training
examples can be processed during the allowed time. The specifics depend on
the computational properties of the chosen optimization algorithm.
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18.3.2 Asymptotic Analysis of the Large-Scale Case

Solving (18.7) in the asymptotic regime amounts to ensuring that the terms of the
decomposition (18.6) decrease at similar rates. Since the asymptotic convergence
rate of the excess error (18.6) is the convergence rate of its slowest term, the
computational effort required to make a term decrease faster would be wasted.

For simplicity, we assume in this section that the Vapnik-Chervonenkis
dimensions of the families of functions F are bounded by a common constant. We
also assume that the optimization algorithms satisfy all the assumptions required
to achieve the convergence rates discussed in section 18.2. Similar analyses can
be carried out for specific algorithms under weaker assumptions (e.g. [22]).

A simple application of the uniform convergence results of [25] gives then the
upper bound

E = Eapp + Eest + Eopt = Eapp + O
(√

logn

n
+ ρ

)
.

Unfortunately the convergence rate of this bound is too pessimistic. Faster
convergence occurs when the loss function has strong convexity properties [9]
or when the data distribution satisfies certain assumptions [24]. The equivalence

E = Eapp+Eest+Eopt ∼ Eapp +
(
logn

n

)α

+ ρ , for some α ∈
[1
2
, 1
]
, (18.8)

provides a more realistic view of the asymptotic behavior of the excess error (e.g.
[13, 4]). Since the three components of the excess error should decrease at the
same rate, the solution of the trade-off problem (18.7) must then obey the
multiple asymptotic equivalences

E ∼ Eapp ∼ Eest ∼ Eopt ∼
(
logn

n

)α

∼ ρ . (18.9)

Table 18.2 summarizes the asymptotic behavior of the four gradient algorithms
described in section 18.2. The first three rows list the computational cost of each
iteration, the number of iterations required to reach an optimization accuracy
ρ, and the corresponding computational cost. The last row provides a more
interesting measure for large scale machine learning purposes. Assuming we
operate at the optimum of the approximation-estimation-optimization trade-
off (18.7), this line indicates the computational cost necessary to reach a
predefined value of the excess error, and therefore of the expected risk. This
is computed by applying the equivalences (18.9) to eliminate the variables n and
ρ from the third row results.2

Although the stochastic gradient algorithms, SGD and 2SGD, are clearly
the worst optimization algorithms (third row), they need less time than the

2 Note that ε1/α ∼ log(n)/n implies both α−1 log ε ∼ log log(n) − log(n) ∼ − log(n)
and n ∼ ε−1/α log n. Replacing log(n) in the latter gives n ∼ ε−1/α log(1/ε).
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Table 18.2. Asymptotic equivalents for various optimization algorithms: gradient
descent (GD, eq. 18.2), second order gradient descent (2GD, eq. 18.3), stochastic
gradient descent (SGD, eq. 18.4), and second order stochastic gradient descent (2SGD,
eq. 18.5). Although they are the worst optimization algorithms, SGD and 2SGD achieve
the fastest convergence speed on the expected risk. They differ only by constant factors
not shown in this table, such as condition numbers and weight vector dimension.

GD 2GD SGD 2SGD
Time per iteration : n n 1 1
Iterations to accuracy ρ : log 1

ρ log log 1
ρ 1/ρ 1/ρ

Time to accuracy ρ : n log 1
ρ n log log 1

ρ 1/ρ 1/ρ

Time to excess error E : 1

E1/α log
2 1
E

1

E1/α log 1
E log log 1

E 1/E 1/E

other algorithms to reach a predefined expected risk (fourth row). Therefore,
in the large scale setup, that is, when the limiting factor is the computing time
rather than the number of examples, the stochastic learning algorithms performs
asymptotically better !

18.4 General Recommendations

The rest of this contribution provides a series of recommendations for using
stochastic gradient algorithms. Although some of these recommendations seem
trivial, experience has shown again and again how easily they can be overlooked.

18.4.1 Preparing the Data

Randomly shuffle the training examples.

Although the theory calls for picking examples randomly, it is usually faster to
zip sequentially through the training set. But this does not work if the examples
are grouped by class or come in a particular order. Randomly shuffling the
examples eliminates this source of problems. Section 1.4.2 provides an additional
discussion.

Use preconditioning techniques.

Stochastic gradient descent is a first-order algorithm and therefore suffers
dramatically when it reaches an area where the Hessian is ill-conditioned.
Fortunately, many simple preprocessing techniques can vastly improve the
situation. Sections 1.4.3 and 1.5.3 provide many useful tips.
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18.4.2 Monitoring and Debugging

Monitor both the training cost
and the validation error.

Since stochastic gradient descent is useful when the training time is the primary
concern, we can spare some training examples to build a decent validation set. It
is important to periodically evaluate the validation error during training because
we can stop training when we observe that the validation error has not improved
in a long time.

It is also important to periodically compute the training cost because
stochastic gradient descent is an iterative optimization algorithm. Since the
training cost is exactly what the algorithm seeks to optimize, the training cost
should be generally decreasing.

A good approach is to repeat the following operations:

1. Zip once through the shuffled training set and perform the stochastic gradient
descent updates (18.4).

2. With an additional loop over the training set, compute the training cost.
Training cost here means the criterion that the algorithm seeks to optimize.
You can take advantage of the loop to compute other metrics, but the
training cost is the one to watch

3. With an additional loop over the validation set, to compute the validation
set error. Error here means the performance measure of interest, such as
the classification error. You can also take advantage of this loop to cheaply
compute other metrics.

Computing the training cost and the validation error represent a significant
computational effort because it requires additional passes over the training and
validation data. But this beats running blind.

Check the gradients using finite differences.

When the computation of the gradients is slightly incorrect, stochastic gradient
descent often works slowly and erratically. This has led many to believe that
slow and erratic is the normal operation of the algorithm.

During the last twenty years, I have often been approached for advice in setting
the learning rates γt of some rebellious stochastic gradient descent program.
My advice is to forget about the learning rates and check that the gradients
are computed correctly. This reply is biased because people who compute the
gradients correctly quickly find that setting small enough learning rates is easy.
Those who ask usually have incorrect gradients. Carefully checking each line of
the gradient computation code is the wrong way to check the gradients. Use
finite differences:
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1. Pick an example z.
2. Compute the loss Q(z, w) for the current w.
3. Compute the gradient g = ∇w Q(z, w).
4. Apply a slight perturbation w′ = w+ δ. For instance, change a single weight

by a small increment, or use δ = −γg with γ small enough.
5. Compute the new loss Q(z, w′) and verify that Q(z, w′) ≈ Q(z, w) + δg .

This process can be automated and should be repeated for many examples
z, many perturbations δ, and many initial weights w. Flaws in the gradient
computation tend to only appear when peculiar conditions are met. It is not
uncommon to discover such bugs in SGD code that has been quietly used for
years.

Experiment with the learning rates γt

using a small sample of the training set.

The mathematics of stochastic gradient descent are amazingly independent of
the training set size. In particular, the asymptotic SGD convergence rates [14] are
independent from the sample size. Therefore, assuming the gradients are correct,
the best way to determine the correct learning rates is to perform experiments
using a small but representative sample of the training set. Because the sample
is small, it is also possible to run traditional optimization algorithms on this
same dataset in order to obtain reference point and set the training cost target.

When the algorithm performs well on the training cost of the small dataset,
keep the same learning rates, and let it soldier on the full training set. Expect the
validation performance to plateau after a number of epochs roughly comparable
to the number of epochs needed to reach this point on the small training set.

18.5 Linear Models with L2 Regularization

This section provides specific recommendations for training large linear models
with L2 regularization. The training objective of such models has the form

En(w) =
λ

2
‖w‖2 + 1

n

n∑

i=1

�(ytwxt) (18.10)

where yt = ±1, and where the function �(m) is convex. The corresponding
stochastic gradient update is then obtained by approximating the derivative of
the sum by the derivative of the loss with respect to a single example

wt+1 = (1− γtλ)wt − γtytxt�′(ytwtxt) (18.11)

Examples:

– Support Vector Machines (SVM) use the non differentiable hinge loss [5] :

�(m) = max{0, 1−m} .
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– It is often more convenient in the linear case to use the log-loss :

�(m) = log(1 + e−m) .

The differentiable log-loss is more suitable for the gradient algorithms dis-
cussed here. This choice leads to a logistic regression algorithm: probability
estimates can be derived using the logistic function:

P (y = +1|x) ≈ 1

1 + e−wx
.

– All statistical models with linear parametrization are in fact amenable to
stochastic gradient descent, using the log-likelihood of the model as the loss
function Q(z, w). For instance, results for Conditional Random Fields (CRF)
[8] are reported in Sec. 18.5.4.

18.5.1 Sparsity

Leverage the sparsity of the training examples {xt}.
– Represent wt as a product stWt where st ∈ IR.

The training examples often are very high dimensional vectors with only a few
non zero coefficients. The stochastic gradient update (18.11)

wt+1 = (1− γtλ)wt − γtytxt�′(ytwtxt)

is then inconvenient because it first rescales all coefficients of vector w by factor
(1−γtλ). In contrast, the rest of the update only involves the weight coefficients
corresponding to a nonzero coefficient in the pattern xt.

Expressing the vector wt as the product stWt, where s is a scalar, provides
a workaround [21]. The stochastic gradient update (18.11) can then be divided
into operations whose complexity scales with the number of nonzero terms in xt:

gt = �
′(ytstWtxt) ,

st+1 = (1 − γtλ)st ,
Wt+1 =Wt − γtytgtxt/st+1 .

18.5.2 Learning Rates

Use learning rates of the form γt = γ0 (1 + γ0λt)
−1

– Determine the best γ0 using a small training data sample.
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When the Hessian matrix of the cost function at the optimum is strictly positive,
the best convergence speed is achieved using learning rates of the form (λmint)

−1

where λmin is the smallest eigenvalue of the Hessian [14]. The theoretical analysis
also shows that overestimating λmin by more than a factor two leads to very
slow convergence. Although we do not know the exact value of λmin, the L2

regularization term in the training objective function means that λmin ≥ λ.
Therefore we can safely use learning rates that asymptotically decrease like
(λt)−1.

Unfortunately, simply using γt = (λt)−1 leads to very large learning rates in
the beginning of the optimization. It is possible to use an additional projection
step [21] to contain the damage until the learning rates reach reasonable values.
However it is simply better to start with reasonable learning rates. The formula
γt = γ0(1 + γ0λt)

−1 ensures that the learning rates γt start from a predefined
value γ0 and asymptotically decrease like (λt)−1.

The most robust approach is to determine the best γ0 as explained earlier,
using a small sample of the training set. This is justified because the asymptotic
SGD convergence rates [14] are independent from the sample size. In order to
make the method more robust, I often use a γ0 slightly smaller than the best
value observed on the small training sample.

Such learning rates have been found to be effective in situations that far
exceed the scope of this particular analysis. For instance, they work well with
nondifferentiable loss functions such as the hinge loss [21]. They also work well
when one adds an unregularized bias term to the model. However it is then wise
to use smaller learning rates for the bias term itself.

18.5.3 Averaged Stochastic Gradient Descent

The stochastic gradient descent!averaged SGD (ASGD) algorithm [19] performs
the normal stochastic gradient update (18.4) and computes the average

w̄t =
1

t− t0

t∑

i=t0+1

wt .

This average can be computed efficiently using a recursive formula. For instance,
in the case of the L2 regularized training objective (18.10), the following weight
updates implement the ASGD algorithm:

wt+1 = (1 − γtλ)wt − γtytxt�′(ytwtxt)

w̄t+1 = w̄t + μt(wt+1 − w̄t)

with the averaging rate
μt = 1/max{1, t− t0} .

When one uses learning rates γt that decrease slower than t−1, the theoretical
analysis of ASGD shows that the training error En(w̄t) decreases like t−1 with
the optimal constant [15]. This is as good as the second order stochastic gradient
descent (2SGD) for a fraction of the computational cost of (18.5).
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Unfortunately, ASGD typically starts more slowly than the plain SGD and can
take a long time to reach the optimal asymptotic convergence speed. Although
an adequate choice of the learning rates helps [27], the problem worsens when
the dimension d of the inputs xt increases. Unfortunately, there are no clear
guidelines for selecting the time t0 that determines when we engage the averaging
process.

Try averaged stochastic gradient with
– Learning rates γt = γ0(1 + γ0λt)−3/4

– Averaging rates μt = 1/max{1, t− d, t− n}

Similar to the trick explained in Sec. 18.5.1, there is an efficient method to
implement averaged stochastic gradient descent for sparse training data. The
idea is to represent the variables wt and w̄t as

wt = stWt

w̄t = (At + αtWt)/βt

where ηt, αt and βt are scalars. The average stochastic gradient update equations
can then be rewritten in the manner that only involve scalars or sparse
operations [27] :

gt = �
′(ytstWtxt) ,

st+1 = (1− γtλ)st
Wt+1 =Wt − γtytxtgt/st+1

At+1 = At + γtαtytxtgt/st+1

βt+1 = βt/(1− μt)
αt+1 = αt + μtβt+1st+1

18.5.4 Experiments

This section briefly reports experimental results illustrating the actual perfor-
mance of SGD and ASGD on a variety of linear systems. The source code is
available at http://leon.bottou.org/projects/sgd. All learning rates were
determined as explained in section 18.5.2.

Figure 18.1 reports results achieved using SGD for a linear SVM trained for
the recognition of the CCAT category in the RCV1 dataset [10] using both
the hinge loss and the log loss. The training set contains 781,265 documents
represented by 47,152 relatively sparse TF/IDF features. SGD runs considerably
faster than either the standard SVM solvers SVMLight and SVMPerf [7] or
the super-linear optimization algorithm TRON [11].

Figure 18.2 reports results achieved for a linear model trained on the ALPHA
task of the 2008 Pascal Large Scale Learning Challenge using the squared hinge
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Algorithm Time Test Error
Hinge loss SVM, λ = 10−4.

SVMLight 23,642 s. 6.02 %
SVMPerf 66 s. 6.03 %
SGD 1.4 s. 6.02 %

Log loss SVM, λ = 10−5.
TRON (-e0.01) 30 s. 5.68 %
TRON (-e0.001) 44 s. 5.70 %
SGD 2.3 s. 5.66 %

50

100

0.1 0.01 0.001 0.0001 1e−05 1e−07 1e−08 1e−09

Training time (secs)

1e−06

Optimization accuracy (trainingCost−optimalTrainingCost) 

TRON

SGD

0.25 Expected risk

0.20

Fig. 18.1. Results achieved with a L2 regularized linear model trained on the RCV1
task using both the hinge loss and the log loss. The lower half of the plot shows the time
required by SGD and TRON to reach a predefined accuracy ρ on the log loss task. The
upper half shows that the expected risk stops improving long before the super-linear
optimization algorithm TRON overcomes SGD.
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Fig. 18.2. Comparison of the test set performance of SGD, SGDQN, and ASGD for a
L2 regularized linear model trained with the squared hinge loss on the ALPHA task
of the 2008 Pascal Large Scale Learning Challenge. ASGD nearly reaches the optimal
expected risk after a single pass.

loss �(m) = max{0, 1−m}2. For reference, we also provide the results achieved
by the SGDQN algorithm [1] which was one of the winners of this competition,
and works by adapting a separate learning rate for each weight. The training set
contains 100,000 patterns represented by 500 centered and normalized variables.
Performances measured on a separate testing set are plotted against the number
of passes over the training set. ASGD achieves near optimal results after one
epoch only.

Figure 18.3 reports results achieved using SGD, SGDQN, and ASGD for
a CRF [8] trained on the CONLL 2000 Chunking task [20]. The training
set contains 8936 sentences for a 1.68 × 106 dimensional parameter space.
Performances measured on a separate testing set are plotted against the number
of passes over the training set. SGDQN appears more attractive because ASGD
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Fig. 18.3. Comparison of the test set performance of SGD, SGDQN, and ASGD on a L2

regularized CRF trained on the CONLL Chunking task. On this task, SGDQN appears
more attractive because ASGD does not fully reach its asymptotic performance.

does not reach its asymptotic performance. All three algorithms reach the best
test set performance in a couple minutes. The standard CRF L-BFGS optimizer
takes 72 minutes to compute an equivalent solution.

18.6 Conclusion

Stochastic gradient descent and its variants are versatile techniques that have
proven invaluable as a learning algorithms for large datasets. The best advice
for a successful application of these techniques is (i) to perform small-scale
experiments with subsets of the training data, and (ii) to pay a ruthless attention
to the correctness of the gradient computation.
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