
1

Generalized
Linear Models

Lecture 1: Introduction

Outline

1 Unit information

2 How to install and use R

3 R basics

4 R coding style

5 Some nice R tips

2

Contact details

Lecturer
Yanfei Kang

Email: yanfeikang@buaa.edu.cn
http://yanfei.site

Tutor
Bohan Zhang

3

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

Unit objectives

1 provide an understanding of statistical models for handling
common data analysis problems

2 develop skills for fitting, interpreting and assessing statistical
models

3 develop computer skills for exploring and modelling different
kinds of data.

Teaching and learning approach
Two 50 min lectures (Thursdays 1:30pm - 15:20pm)
At least 3 hours’ learning after class

4

5

Key reference

6

pdf on opencourse

Note

Thanks to Prof. Rob Hyndman for sharing his slides.
The textbook and slides are not allowed to be put online.

7

http://robjhyndman.com/

Outline (tentative)

Week(s) Topic

1,2 GLM Review of R and linear models
3 GLM Binary responses
4,5 GLM Binomial and proportional responses
6,7 GLM Regression with count responses
8 GLM Multinomial Data
9,10 GLM Generalized linear model theory
11,12 GLMM Random effects
13,14 GLMM Mixed effectss for non-Gaussian responses
15 GAM Extras
16 - Revision

8

Assessment

Task Value

Attendence 10%
Assignments 30%
Final exam 60%

9

Outline

1 Unit information

2 How to install and use R

3 R basics

4 R coding style

5 Some nice R tips

10

Getting and Installing R

Totally free!
Download R on its official website.

11

https://www.r-project.org

R User Interface

Direct R
Rstudio

One of the most popular ways to run R.
Free, open-source integrated development environment (IDE)
for R.
Many additional fantastic features.

Command line in Linux and Unix.

12

Editor

What editor do you usually use?
Use a good text editor such as vim, sublime text, text
wrangler, notepad, etc
With syntax highlighting, otherwise, it’s hard to detect errors
Or use an Integrated Development Environment (IDE) like
RStudio

13

Use an IDE: Rstudio

Syntax highlighting
Able to evaluate R code

by line
by selection
entire file

Command auto-completion

14

Outline

1 Unit information

2 How to install and use R

3 R basics

4 R coding style

5 Some nice R tips

15

R packages

Standard R comes with some standard packages installed for
basic data management, analysis, and graphical tools.
More than 10,000 packages available on CRAN! See
http://cran.r-project.org.
install.packages('formatR') to install an package
called ‘formatR’.
library(formatR) before using the package.

16

http://cran.r-project.org

Basic Operations

simple maths
1 + 2 + 3
1 + 2 * 3

assign a value to a variable
x <- 1
y <- 2
z <- c(x,y)
z

17

Basic Operations

function examples
exp(1)
cos(3.141593)
log2(1)

18

Vectors

Numerical vectors
Logical vectors
Character vectors
Length of a vector
Vector calculations
Extract some elements of a vector

19

Vectors

vectors
c(0, 1, 1, 2, 3, 5, 8)
1:10
seq(1, 9, 2)
rep(1, 10)
length(rep(1, 10))

character vectors
c("Hello world", "Hello R interpreter")

20

Vectors

vector calculation
c(1, 2, 3, 4) + c(10, 20, 30, 40)
c(1, 2, 3, 4) + 1
c(1, 2, 3, 4) * 2

21

Vectors

you can refer to elements by location
in a vector
b <- c(1,2,3,4,5,6,7,8,9,10,11,12)
length(b)
b
b[7]
b[1:6]
b[c(1,6,11)]
b > 5
b[b > 5]

22

Matrix

Create a matrix: matrix()
Dimension of a matrix: dim()
Transpose of a matrix: t()
Extract elements from a matrix.
Combine two or more matrices: rbind(), cbind()

23

Matrix - Example

create a matrix
m <- matrix(c(1:6), 2, 3)
n <- matrix(c(8:13), 2, 3)
dim(m)
t(m)
m[1, 2]
m[1,]
cbind(m, n)
rbind(m, n)

24

List

Special data structure that matrix could not handle.

Data length are not the same.
Data type are not the same.

Create a list: list()
Extract elements of a list: [[]] or $

l <- list(a = c(1, 2), b = 'apple')

25

Data frame

data.frame(): tightly coupled collections of variables which
share many of the properties of matrices and of lists, used as
the fundamental data structure by most of R’s modeling
software.
In most cases, the operation with a data frame is similar to
matrix operation.

L3 <- LETTERS[1:3]
fac <- sample(L3, 10, replace = TRUE)
d <- data.frame(x = 1, y = 1:10, fac = fac)

26

Functions

Create a function

f <- function(x, y) {
z <- c(x + 1, y + 1)
return(z)

}
f(1, 2)

Load the function: source()
Execute your function

27

The if condition

Syntax
if (condition){

do something
} else {

do something
}

28

The if condition - Example

x <- 0
if (x > 1) {

print('x is larger than 1')
} else {

print('x is not larger than 1')
}

29

Loops

x <- 1:10
for(i in x) {

print(i^2)
}

30

Your turn (1)

1 Write a function MySummary() where the input argument is x
can be any vector and the output is a list that contains the
basic summary (mean, variance, length, max and minimum
values) of the vector you have supplied to the function.

2 Test your function with some vectors (that you make up by
yourself).

31

Outline

1 Unit information

2 How to install and use R

3 R basics

4 R coding style

5 Some nice R tips

32

File names

File names should end in .R and, of course, bemeaningful.
GOOD: predict_ad_revenue.R
BAD: foo.R

33

Choose the names carefully

The preferred form for variable names is all lower case letters
and words separated with dots (variable.name), but
variableName is also accepted. Generally, variable names
should be nouns.

GOOD: avg.clicks
OK: avgClicks
BAD: avg_Clicks

Function names have initial capital letters and no dots.
Function names are mostly verbs.

GOOD: CalculateAvgClicks
BAD: calculate_avg_clicks , calculateAvgClicks

Choose a consistent naming style

34

What we should not do

Don’t use underscores (_) or hyphens (-).
Avoid using names of existing functions and variables like
mean, median etc.
Avoid using meaningless names like a, b, c, . . . , aa, bb, cc, . . .

35

White Spaces

around operators (=, +, -, <-, etc)
put a space after a comma, and never before

x <- c(1:10)
x.average<-mean(x,na.rm=TRUE)

⇒

x.average <- mean(x, na.rm = TRUE)

split long lines at meaningful places

36

White Spaces

Don’t be afraid of splitting one long line into individual pieces!

n <- matrix(sample(1:100, 9),
nrow = 3,
ncol = 3,
byrow = TRUE)

37

Curly braces

An opening curly brace should never go on its own line and
should always be followed by a new line.
A closing curly brace should always go on its own line, unless
it’s followed by else.
Always begin the body of a block on a new line.
Always indent the code inside curly braces.

38

Curly braces

if (y < 0) {print("y is negative")}

⇒

if (y < 0) {
print("y is negative")

}

39

Indenting

Use two spaces
Can help in detecting errors in your code because it can
expose lack of symmetry
Reindenting using RStudio

40

Indenting

if (y < 0) {
print("y is negative")
}

⇒

if (y < 0) {
print("y is negative")

}

41

Make your code tidy in a second!

Reformat and reindent in Rstudio.
formatR package in R. You can even make a folder of .R files
tidy using tidy.dir().

42

Header, Line spaces and Comments

Add a Header for your file
Add lots of comments
Use blank lines to separate blocks of code and comments to
say what the block does. Remember that in a few months,
you may not follow your own code any better than a stranger.

43

Function Documentation

Functions should contain a comments section immediately
below the function definition line.
These comments should include

a one-sentence description of the function
a list of the function’s arguments, denoted by Args:, with a
description of each (including the data type)
a description of the return value, denoted by Returns:.
The comments should be descriptive enough that a caller can
use the function without reading any of the function’s code.

44

Outline

1 Unit information

2 How to install and use R

3 R basics

4 R coding style

5 Some nice R tips

45

How to find the right function

Functions in installed packages

library(forecast)
help.search("auto.arima")
??auto.arima

Functions in other CRAN packages

library(sos)
findFn("arima")
RSiteSearch("arima")

46

Digging into functions

Type ?sort for the usage of the function sort().
Typing the name of a function gives its definition.
Type forecast:::estmodel for hidden functions.
Download the tar.gz file from CRAN if you want to see any
underlying C or Fortran code.

47

Organize your R projects

Every paper, book or scientific report is a ‘project’.
Every project has its own folder and R workspace.
Every project is entirely scripted. That is, all analysis, graphs
and tables must be able to be generated by running one
script.

This script sources all other R files in the correct order and
yields all the required results. This script could be in main.R
or main.Rmd.
functions.R contains all non-packaged functions used in
the project.
each function can not be too long.

48

Look at other people’s codes

https://github.com/hadley
https://github.com/yihui
https://github.com/karthik
https://github.com/kbroman
https://github.com/cboettig
https://github.com/garrettgman

49

https://github.com/hadley
https://github.com/yihui
https://github.com/karthik
https://github.com/kbroman
https://github.com/cboettig
https://github.com/garrettgman

Getting help

For programming questions: StackOverflow.com
For statistical questions: CrossValidated.com

50

Keep up-to-date

RStudio blog: blog.rstudio.org
R-bloggers: www.r-bloggers.com
It takes time to develop your own style. Once it is developed,
it is really hard to be changed. So please be careful at the
beginning.

51

Your turn (2)

Use tidy_dir() to make your code tidy.

52

References

Official introduction to R
Google R style guide
Rob’s tips

53

https://cran.r-project.org/doc/manuals/R-intro.pdf
https://google.github.io/styleguide/Rguide.xml
http://robjhyndman.com/hyndsight/simpler/

	Unit information
	How to install and use R
	R basics
	R coding style
	Some nice R tips

