
1

Generalized
Linear Models

Lecture 10: Nonparametric regression

Nonparametric regression

yi = f(xi) + εi

How to estimate f?
Could assume f(x) = β0 + β1x + β2x2 + β3x3

Or f(x) = β0 + β1xβ2

OK if you know the right form.
But often better to assume only that f is continuous and smooth.

2

Examples

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−1

0

1

0.00 0.25 0.50 0.75 1.00

x

y

Example A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0

4

8

12

0.00 0.25 0.50 0.75 1.00

x

y

Example B

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

50

60

70

80

90

2 3 4 5

eruptions

w
ai

tin
g

Old Faithful

3

Outline

1 Kernel estimators

2 Local polynomials

3 Splines

4 Multivariate predictors

4

Kernel estimators

In brief
For any point x0, the value of the function at that point f(x0) is some
combination of the (nearby) observations.

Kernel function
The contribution of each observation xj , f(xj) to f(x0) is calculated using a
weighting function or Kernel Kh(x0, xj). h is the width of the
neighborhood.

5

K-Nearest-Neighbor (KNN) Average

A simple estimate of f(x0) at any point x0 is the mean of the k points
closest to x0.

f̂(x0) = Ave(yi|xi ∈ Nk(x0)).

6

KNN example

7

Problem with KNN

Problem

Regression function f̂(x) is discontinuous.

Solution
Weight all points such that their contribution drop off smoothly with
distance.

8

Kernel estimators

Nadaraya–Watson estimator

f̂h(x) =

n∑
j=1

K
(x− xj

h

)
yj

n∑
j=1

K
(x− xj

h

)

K is a kernel function where
∫
K = 1, K(a) = K(−a), and K(0) ≥ K(a),

for all a.
f̂ is a weighted moving average
Need to choose K and h.

9

Common kernels

Uniform

K(x) =


1
2 −1 < x < 1
0 otherwise.

Epanechnikov

K(x) =


3
4(1− x2) −1 < x < 1
0 otherwise.

Tri-cube

K(x) =
c(1− |x|

3)3 −1 < x < 1
0 otherwise.

Gaussian
K(x) =

1√
2π

e−
1
2x

2

10

Common kernels

0.00

0.25

0.50

0.75

−2 0 2

x

K
(x

)

Kernel
Epanechnikov

Gaussian

Tri−cube

Uniform

11

KNN vs Smooth Kernel Comparison

12

Old Faithful

13

Kernel smoothing

A smooth kernel is better, but otherwise the choice of kernel makes
little difference.
Optimal kernel (minimizing MSE) is Epanechnikov. It is also fast.
The choice of h is crucial.

14

Example A

15

Example B

16

Cross-validation

CV(h) =
1
n

n∑
j=1

(yj − f̂(−j)h (xj))2

(−j) indicates jth point omitted from estimate
Pick h that minimizes CV.
Works ok provided there are no duplicate (x, y) pairs. But
occasionally odd results.

17

Kernel smoothing in R

Many packages available. One of the better ones is KernSmooth:

fit <- locpoly(faithful$eruptions, faithful$waiting,
degree=0, bandwidth=0.3) %>% as.tibble

ggplot(faithful) +
geom_point(aes(x=eruptions,y=waiting)) +
geom_line(data=fit, aes(x=x,y=y), col='blue')

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

50

60

70

80

90

2 3 4 5

eruptions

w
ai

tin
g

18

Problems with the Smooth Weighted Average

19

Outline

1 Kernel estimators

2 Local polynomials

3 Splines

4 Multivariate predictors

20

Local linear regression

Kernel smoothing
Equivalent to local constant regression at each point.

min
n∑
j=1

wj(x)(yj − a0)2

Local Linear Regression
Fit a line at each point instead.

min
n∑
j=1

wj(x)(yj − a0 − a1xj)2

21

Local polynomials

22

Step 1

World pulp price

P
ul

p
sh

ip
m

en
ts

10
15

20
25

30
35

500 600 700 800

Step 2

World pulp price

W
ei

gh
t f

un
ct

io
n

500 600 700 800

Step 3

World pulp price

P
ul

p
sh

ip
m

en
ts

10
15

20
25

30
35

•

500 600 700 800

Result

World pulp price

P
ul

p
sh

ip
m

en
ts

10
15

20
25

30
35

•

500 600 700 800

Local polynomials

min
n∑
j=1

wj(x)(yj −
p∑
k=0

akxpj)
2

Local linear and local quadratic are commonly used.
Robust regression can be used instead
Less biased at boundaries than kernel smoothing
Local quadratic less biased at peaks and troughs than local linear or
kernel

23

Local polynomials in R

One useful implementation is
KernSmooth::locpoly(x, y, degree, bandwidth)
dpill can be used to choose the bandwidth h if degree=1.
Otherwise, h could be selected by cross-validation.
But most people seem to use trial and error — finding the largest h
that captures what they think they see by eye.

24

Loess

Best known implementation is loess (locally quadratic)

fit <- loess(y ~ x, span=0.75, degree=2,
family="gaussian", data)

Uses tri-cube kernel and variable bandwidth.
span controls bandwidth. Specified in terms of percentage of data
covered.
degree is order of polynomial
Use family="symmetric" for a robust fit

25

Loess

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

50

60

70

80

90

2 3 4 5

eruptions

w
ai

tin
g

Old Faithful (Loess, span=0.75)

26

Loess in R

smr <- loess(waiting ~ eruptions, data=faithful)
ggplot(faithful) +

geom_point(aes(x=eruptions,y=waiting)) +
ggtitle("Old Faithful (Loess, span=0.75)") +
geom_line(aes(x=eruptions, y=fitted(smr)),

col='blue')

27

Loess

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−1

0

1

0.00 0.25 0.50 0.75 1.00

x

y

Example A (Loess, span=0.75)

28

Loess

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−1

0

1

0.00 0.25 0.50 0.75 1.00

x

y

Example A (Loess, span=0.22)

29

Loess

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0

4

8

12

0.00 0.25 0.50 0.75 1.00

x

y

Example B (Robust Loess, span=0.75)

30

Loess and geom_smooth()

ggplot(exa) +
geom_point(aes(x=x,y=y)) +
geom_smooth(aes(x=x,y=y), method='loess',

span=0.22)

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−1

0

1

0.00 0.25 0.50 0.75 1.00

x

y

31

Loess and geom_smooth()

Because local polynomials use local linear models, we can easily find
standard errors for the fitted values.

Connected together, these form a pointwise confidence band.

Automatically produced using geom_smooth

32

Outline

1 Kernel estimators

2 Local polynomials

3 Splines

4 Multivariate predictors

33

Splines

34

Splines

A spline is a continuous function f(x) interpolating all points (κj, yj) for
j = 1, . . . , K and consisting of polynomials between each consecutive pair
of ‘knots’ κj and κj+1.

Parameters constrained so that f(x) is continuous.
Further constraints imposed to give continuous derivatives.
Cubic splines most common, with f′, f′′ continuous.

35

Splines

A spline is a continuous function f(x) interpolating all points (κj, yj) for
j = 1, . . . , K and consisting of polynomials between each consecutive pair
of ‘knots’ κj and κj+1.

Parameters constrained so that f(x) is continuous.
Further constraints imposed to give continuous derivatives.
Cubic splines most common, with f′, f′′ continuous.

35

Smoothing splines

Let y = f(x) + ε where ε ∼ IID(0, σ2). Then
Choose f̂ to minimize

1
n
∑
i
(yi − f(xi))2 + λ

∫
[f′′(x)]2dx

λ is smoothing parameter to be chosen∫
[f′′(x)]2dx is a measure of roughness.

Solution: f̂ is a cubic spline with knots κi = xi, i = 1, . . . , n (ignoring
duplicates).
Other penalties lead to higher order splines
Cross-validation can be used to select λ.

36

Smoothing splines

37

Smoothing splines

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

50

60

70

80

90

2 3 4 5

eruptions

w
ai

tin
g

Old Faithful (Smoothing spline, lambda chosen by CV)

38

Smoothing splines

smr <- smooth.spline(faithful$eruptions, faithful$waiting,

cv=TRUE)

smr <- data.frame(x=smr$x,y=smr$y)

ggplot(faithful) +

geom_point(aes(x=eruptions,y=waiting)) +

ggtitle("Old Faithful (Smoothing spline, lambda chosen by CV)") +

geom_line(data=smr, aes(x=x, y=y), col='blue')

39

Smoothing splines

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−1

0

1

0.00 0.25 0.50 0.75 1.00

x

y

Example A (Smoothing spline, lambda chosen by CV)

40

Smoothing splines

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0

4

8

12

0.00 0.25 0.50 0.75 1.00

x

y

Example B (Smoothing spline, lambda chosen by CV)

41

Regression splines

Fewer knots than smoothing splines.
Need to choose the knots rather than a smoothing parameter.
Can be estimated as a linear model once knots are selected.

42

General cubic regression splines

Let κ1 < κ2 < · · · < κK be “knots” in interval (a, b).

Let x1 = x, x2 = x2, x3 = x3, xj = (x− κj−3)3+ for j = 4, . . . , K + 3.

Then the regression of y on x1, . . . , xK+3 is piecewise cubic, but
smooth at the knots.

Choice of knots can be difficult and arbitrary.

Automatic knot selection algorithms very slow.

Often use equally spaced knots. Then only need to choose K.

43

Natural splines in R

fit <- lm(waiting ~ ns(eruptions, df=6), faithful)
ggplot(faithful) +

geom_point(aes(x=eruptions,y=waiting)) +
ggtitle("Old Faithful (Natural splines, 6 df)") +
geom_line(aes(x=eruptions, y=fitted(fit)), col='blue')

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

50

60

70

80

90

2 3 4 5

eruptions

w
ai

tin
g

Old Faithful (Natural splines, 6 df)

44

Natural splines in R

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−1

0

1

0.00 0.25 0.50 0.75 1.00

x

y

Example A (Natural splines, 12 df)

45

Natural splines in R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0

4

8

12

0.00 0.25 0.50 0.75 1.00

x

y

Example B (Natural splines, 3 df)

46

Natural splines in R

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0

4

8

12

0.00 0.25 0.50 0.75 1.00

x

y

Example B (Natural splines, 10 df)

47

Splines and geom_smooth()

ggplot(exa) +
geom_point(aes(x=x,y=y)) +
geom_smooth(aes(x=x,y=y), method='gam',

formula = y ~ s(x,k=12))

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−1

0

1

0.00 0.25 0.50 0.75 1.00

x

y

48

Splines and geom_smooth()

Because regression splines use local linear models, we can easily find
standard errors for the fitted values.

Connected together, these form a pointwise confidence band.

Automatically produced using geom_smooth

49

Outline

1 Kernel estimators

2 Local polynomials

3 Splines

4 Multivariate predictors

50

Multivariate predictors

yi = f(xi) + εi, x ∈ Rd

Most methods extend naturally to higher dimensions.

Multivariate kernel methods
Multivariate local quadratic surfaces
Thin-plate splines (2-d version of smoothing splines)

Problem
The curse of dimensionality!

51

Multivariate predictors

yi = f(xi) + εi, x ∈ Rd

Most methods extend naturally to higher dimensions.

Multivariate kernel methods
Multivariate local quadratic surfaces
Thin-plate splines (2-d version of smoothing splines)

Problem
The curse of dimensionality!

51

Curse of dimensionality

Most data lie near the boundary

x <- matrix(runif(1e6,-1,1), ncol=100)
boundary <- function(z) { any(abs(z) > 0.95) }

mean(apply(x[,1,drop=FALSE], 1, boundary))

[1] 0.0494

mean(apply(x[,1:2], 1, boundary))

[1] 0.0971

mean(apply(x[,1:5], 1, boundary))

[1] 0.2276

52

Curse of dimensionality

Most data lie near the boundary

x <- matrix(runif(1e6,-1,1), ncol=100)
boundary <- function(z) { any(abs(z) > 0.95) }

mean(apply(x[,1:10], 1, boundary))

[1] 0.4052

mean(apply(x[,1:50], 1, boundary))

[1] 0.9205

mean(apply(x[,1:100], 1, boundary))

[1] 0.9938

53

Curse of dimensionality

Data are sparse

x <- matrix(runif(1e6,-1,1), ncol=100)
nearby <- function(z) { all(abs(z) < 0.5) }
mean(apply(x[,1,drop=FALSE], 1, nearby))

[1] 0.4953

mean(apply(x[,1:2], 1, nearby))

[1] 0.2512

mean(apply(x[,1:5], 1, nearby))

[1] 0.0291

54

Curse of dimensionality

Data are sparse

x <- matrix(runif(1e6,-1,1), ncol=100)
nearby <- function(z) { all(abs(z) < 0.5) }
mean(apply(x[,1:10], 1, nearby))

[1] 5e-04

mean(apply(x[,1:50], 1, nearby))

[1] 0

mean(apply(x[,1:100], 1, nearby))

[1] 0

55

Bivariate smoothing

lomod <- loess(sr ~ pop15 + ddpi, data=savings)

pop15

25

30
35

40
45ddpi 5

10

15

savings rate

10

20

30

40

56

Bivariate smoothing

library(mgcv)
smod <- gam(sr ~ s(pop15, ddpi), data=savings)

pop15

25

30
35

40
45

ddpi

5

10

15

linear predictor 10

15

57

	Kernel estimators
	Local polynomials
	Splines
	Multivariate predictors

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	anm2:
	2.EndLeft:
	2.StepLeft:
	2.PauseLeft:
	2.PlayLeft:
	2.PlayPauseLeft:
	2.PauseRight:
	2.PlayRight:
	2.PlayPauseRight:
	2.StepRight:
	2.EndRight:
	2.Minus:
	2.Reset:
	2.Plus:
	3.0:
	3.1:
	3.2:
	3.3:
	3.4:
	3.5:
	3.6:
	3.7:
	3.8:
	3.9:
	3.10:
	3.11:
	3.12:
	3.13:
	3.14:
	3.15:
	3.16:
	3.17:
	3.18:
	3.19:
	3.20:
	3.21:
	3.22:
	3.23:
	3.24:
	3.25:
	3.26:
	3.27:
	3.28:
	3.29:
	3.30:
	3.31:
	3.32:
	3.33:
	3.34:
	3.35:
	3.36:
	3.37:
	3.38:
	3.39:
	3.40:
	3.41:
	3.42:
	3.43:
	3.44:
	3.45:
	3.46:
	3.47:
	3.48:
	3.49:
	3.50:
	3.51:
	3.52:
	3.53:
	3.54:
	3.55:
	3.56:
	3.57:
	3.58:
	3.59:
	3.60:
	3.61:
	3.62:
	3.63:
	3.64:
	3.65:
	3.66:
	3.67:
	3.68:
	3.69:
	3.70:
	3.71:
	3.72:
	3.73:
	3.74:
	3.75:
	3.76:
	3.77:
	3.78:
	3.79:
	3.80:
	3.81:
	3.82:
	3.83:
	3.84:
	3.85:
	3.86:
	3.87:
	3.88:
	3.89:
	3.90:
	3.91:
	3.92:
	3.93:
	3.94:
	3.95:
	3.96:
	3.97:
	3.98:
	3.99:
	anm3:
	3.EndLeft:
	3.StepLeft:
	3.PauseLeft:
	3.PlayLeft:
	3.PlayPauseLeft:
	3.PauseRight:
	3.PlayRight:
	3.PlayPauseRight:
	3.StepRight:
	3.EndRight:
	3.Minus:
	3.Reset:
	3.Plus:

