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Additive models

Multiple linear regression model

yi = β0 + β1xi1 + β2xi2 + · · · + βpxip + εi

Replace each linear component βjxij with a (smooth) non-linear
function fj(xij).

yi = β0 +
p∑
j=1

fj(xij) + εi, εi ∼ N(0, σ2).
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Additive models

By assuming additive surface, we can avoid curse of dimensionality.
Restricts complexity but a much richer class of surfaces than
parametric models (e.g., nonlinear relationships).
Need to estimate p one-dimensional functions instead of one
p-dimensional function.
Usually set each fj to have zero mean.
Some fj may be linear.
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Additive models

Up to p different bandwidths to select.
Estimated functions, fj, are analogues of coefficients in linear
regression.
Interpretation easy with additive structure.
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Additive models

In its basic form, the additive model will do poorly when strong
interactions exist.
Allow interaction between two continuous variables xj and xk by
fitting a bivariate surface fj,k(xj, xk).
Allow interaction betwen factor xj and continuous xk by fitting
separate functions fj,k(xk) for each level of xj.
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Additive models in R

gam package: more smoothing approaches, uses a backfitting
algorithm for estimation.
mgcv package: simplest approach, with automated smoothing
selection and wider functionality.
gss package: smoothing splines only
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Estimation in gam

Back-fitting-algorithm (Hastie and Tibshirani, 1990)

1 Set β0 = ȳ.

2 Set fj(x) = β̂jx where β̂j is OLS estimate.

3 For j = 1, . . . , p, 1, . . . , p, 1, . . . , p, . . .
fj(x) = S(xj, y − β0 −

∑
i6=j

fi(xi))

where S(x, u) means univariate smooth of u on x.

Iterate step 3 until convergence.

S could be any univariate smoother.
y − β0 −

∑
i6=j
fi(xi) is a “partial residual”

8



Estimation in gam

Back-fitting-algorithm (Hastie and Tibshirani, 1990)

1 Set β0 = ȳ.
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Generalized additive models (GAM)

Generalized Linear Model (GLM)
Distribution of y

Link function g

E(y | x1, . . . , xp) = µ where g(µ) = β0 +
p∑
j=1
βjxj.

Generalised Additive Model (GAM)
Distribution of y

Link function g

E(y | x1, . . . , xp) = µ where g(µ) = β0 +
p∑
j=1

fj(xj).
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Generalized additive models

Examples:

Y binary and g(µ) = log[µ(1− µ)]. This is a logistic additive model.
(GAM for classification!)
Y normal and g(µ) = µ. This is a standard additive model.

Estimation
Hastie and Tibshirani describe method for fitting GAMs using a method
known as “local scoring” which is an extension of the Fisher scoring
procedure.
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Pros of GAM

GAMs allow us to fit a non-linear fj to each xj, so that we can
automatically model non-linear relationships that standard linear re-
gression will miss. This means that we do not need to manually try
out many different transformations on each variable individually.
The non-linear fits can potentially make more accurate predictions
for the response y.
Because the model is additive, we can still examine the effect of
each xj on y individually while holding all of the other variables fixed.
Hence if we are interested in inference, GAMs provide a useful
representation.
The smoothness of the function fj for the variable xj can be sum-
marized via degrees of freedom.
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Cons of GAM

GAM is restricted to be additive. With many variables, important
interactions can be missed.However, as with linear regression, we
can manually add interaction terms to the GAMmodel by including
additional predictors of the form xj × xk. In addition we can add
low-dimensional interaction functions of the form fjk(xj, xk) into the
model; such terms can be fit using two-dimensional smoothers such
as local regression, or two-dimensional splines (not covered here).
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Generalised additive mixed models (GAMM)

GAMMmanages to combine the three major themes of this book.

1 The response can be nonnormal from the exponential family of
distributions.

2 The error structure can allow for grouping and hierarchical
arrangements in the data.

3 Finally we can allow for smooth transformations of the response.
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