

# Generalized Linear Models

Lecture 8: Hierarchical models and longitudinal data





## 2 Hierarchical Linear Models (HLM)

3 Longitudinal data

- Handle data where observations are not independent.
- Uncorrelated error is important but often violated.
- Violations occur when error terms are not independent but instead cluster by one or more grouping variables.
  - For instance, predicted student test scores and errors in predicting them may cluster by classroom, school, and municipality.
- LMM can lead to substantially different conclusions compared to conventional regression analysis.

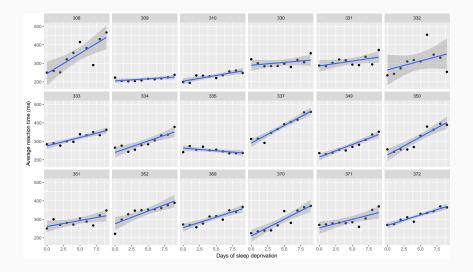
Linear mixed models are a generalization of general linear models to better support analysis of a continuous dependent variable for *random effects*.

#### Bear in mind:

**Fixed effects:** variables that we expect will have an effect on the dependent/response variable.

**Random effects:** grouping factors and they are categorical. Often we are not specifically interested in their impact on the response variable. Additionally, the data for our random effect is just a sample of all the possibilities.

## A revisit to sleepstudy data



# Why not include dummy variables?

#### Why not include dummy variables?

#### Benefits of using random effects

- We can generalize to a wider population.
- 2 Fewer parameters are needed.
- <sup>3</sup> Information can be shared between groups.

- 1 *Hierarchical effects:* When variables are measured at more than one level. Assess the effects of higher levels on the intercepts and coefficients at the lowest level.
  - scores at student level and teacher-student ratios at school level
  - sentencing lengths at the offender level, gender of judges at the court level, and budgets of judicial districts at the district level
- 2 *Repeated measures:* For when observations are correlated rather than independent. e.g., before–after studies, time series data.

# 1 Linear Mixed Models (LMM)

# 2 Hierarchical Linear Models (HLM)

3 Longitudinal data

## Levels of one factor vary only within levels of another factor.

- Workers within job locations
- Units within campus

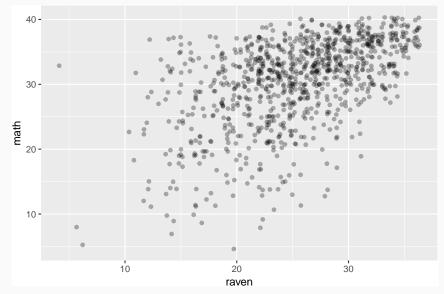
- Any non-nested effects are "crossed".
- That is, every level of one factor can potentially interact with every level of another factor.
- Incomplete crossing occurs when not all combinations of factors exist in the data.

- Models with nested (hierarchical) structure.
- Commonly used in psychology, education, and other social sciences where survey data is naturally clustered hierarchically.

#### Junior School Project (1988)

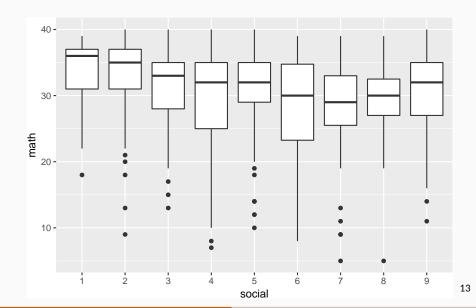
Variables: student, class, school, gender, social, raven, math, english, year Nesting: school:class:student Other variables crossed.

# Plot our data - faraway :: jsp



12

# Plot our data



```
glin <- lm(math ~ raven*gender*social,jspr)
anova(glin)
glin <- lm(math ~ raven*social,jspr)
anova(glin)
glin <- lm(math ~ raven+social,jspr)
summary(glin)</pre>
```

#### All 953 students are independent?

2 Remember that they come from 50 different schools.

### table(jspr\$school)

| ## |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| ## | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| ## | 26 | 11 | 14 | 24 | 26 | 18 | 11 | 27 | 21 | 0  | 11 | 23 | 22 | 13 | 7  | 16 | 6  | 18 | 14 |
| ## | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 44 | 45 |
| ## | 20 | 22 | 15 | 13 | 27 | 35 | 23 | 44 | 27 | 16 | 28 | 17 | 12 | 14 | 10 | 10 | 41 | 5  | 11 |

We need an analysis that uses the individual-level information, but also reflects the grouping in the data.

```
mmod <-
lmer(math ~ raven * social * gender +
(1 | school) +
(1 | school:class), data = jspr)</pre>
```

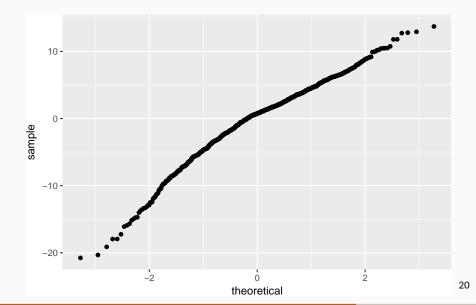
## **Model selection**

all3 <- lmer(math ~ raven \* social \* gender + (1 | school) + (1 | school:class), data = jspr, REML = FALSE) all2 <- update(all3, . ~ . - raven:social:gender)</pre> notrs <- update(all2, . ~ . -raven:social)</pre> notrg <- update(all2, . ~ . -raven:gender)</pre> notsg <- update(all2, . ~ . -social:gender)</pre> onlyrs <- update(all2, . ~ . social:gender-raven:gender) all1 <- update(all2, . ~ . -social:gender raven:gender - social:raven) nogen <- update(all1, . ~ . -gender)</pre>

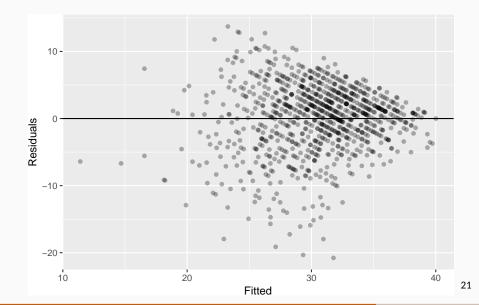
anova(all3, all2, notrs, notrg, notsg, onlyrs, all1, nogen)

| ## |        | Df | AIC    | BIC    | logLik  |
|----|--------|----|--------|--------|---------|
| ## | nogen  | 13 | 5954.3 | 6017.5 | -2964.2 |
| ## | all1   | 14 | 5955.6 | 6023.6 | -2963.8 |
| ## | onlyrs | 22 | 5950.1 | 6057.0 | -2953.1 |
| ## | notrs  | 23 | 5961.6 | 6073.4 | -2957.8 |
| ## | notsg  | 23 | 5952.0 | 6063.8 | -2953.0 |
| ## | notrg  | 30 | 5956.1 | 6101.9 | -2948.1 |
| ## | all2   | 31 | 5957.8 | 6108.4 | -2947.9 |
| ## | all3   | 39 | 5966.7 | 6156.2 | -2944.3 |

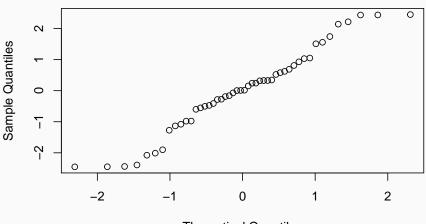
# Model diagnosis: fixed effects



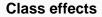
# Model diagnosis: fixed effects

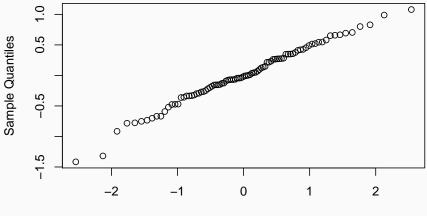






**Theoretical Quantiles** 





**Theoretical Quantiles** 



## 2 Hierarchical Linear Models (HLM)

3 Longitudinal data

- Repeated measurements on each unit taken over time.
- Called "panel data" in econometrics. Called "longitudinal data" in every other discipline.
- Individuals treated as random effects
- Differs from time series in having many units (e.g., people) but often not many observations per person.
- i.e., Longitudinal data has large N, small T; Time series data has small N, large T.

For unit (individual) i,  $y_i$  is a T-vector such that

 $\mathbf{y}_i | \gamma_i \sim N(\mathbf{X}_i \boldsymbol{eta} + \gamma_i, \sigma^2 \boldsymbol{\Lambda}_i)$ 

•  $\gamma_i \sim N(0, \sigma^2 D)$  is effect of *i*th unit

- X<sub>i</sub> contains predictors for fixed effects
- Λ<sub>i</sub> handles autocorrelations within units
- **y**<sub>i</sub> ~  $N(X_i\beta, \Sigma_i)$  where  $\Sigma_i = \sigma^2(\Lambda_i + D)$

 Assume individuals are independent, and random effects and errors are uncorrelated. Combining individuals (assuming independence):

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_N \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_N \end{bmatrix}$$
$$\mathbf{\Sigma} = \operatorname{diag}(\mathbf{\Sigma}_1, \mathbf{\Sigma}_2, \dots, \mathbf{\Sigma}_N),$$
$$\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \mathbf{\Sigma})$$

Combining individuals (assuming independence):

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_N \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_N \end{bmatrix}$$
$$\Sigma = \operatorname{diag}(\Sigma_1, \Sigma_2, \dots, \Sigma_N),$$
$$\mathbf{y} \sim N(\mathbf{X}\beta, \Sigma)$$

Only additional complication is choosing correlation structure

• Other random effects can be added; then  $\gamma_i$  becomes a vector.