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Generalized
Linear Models

Lecture 8: Hierarchical models and
longitudinal data
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Linear Mixed Models (LMM)

Handle data where observations are not independent.
Uncorrelated error is important but often violated.
Violations occur when error terms are not independent but instead
cluster by one or more grouping variables.

For instance, predicted student test scores and errors in predicting
them may cluster by classroom, school, and municipality.

LMM can lead to substantially different conclusions compared to
conventional regression analysis.
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Linear Mixed Models (LMM)

Linear mixed models are a generalization of general linear models to
better support analysis of a continuous dependent variable for random
effects.

Bear in mind:
Fixed effects: variables that we expect will have an effect on the
dependent/response variable.
Random effects: grouping factors and they are categorical. Often we are
not specifically interested in their impact on the response variable.
Additionally, the data for our random effect is just a sample of all the
possibilities.
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A revisit to sleepstudy data
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Question

Why not include dummy variables?

Benefits of using random effects

1 We can generalize to a wider population.

2 Fewer parameters are needed.

3 Information can be shared between groups.
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Linear Mixed Models (LMM)

1 Hierarchical effects: When variables are measured at more than one
level. Assess the effects of higher levels on the intercepts and
coefficients at the lowest level.

scores at student level and teacher–student ratios at school level
sentencing lengths at the offender level, gender of judges at the court
level, and budgets of judicial districts at the district level

2 Repeated measures: For when observations are correlated rather
than independent. e.g., before–after studies, time series data.
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Nested effects

Levels of one factor vary only within levels of another factor.

Workers within job locations
Units within campus
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Crossed effects

Any non-nested effects are “crossed”.
That is, every level of one factor can potentially interact with every
level of another factor.
Incomplete crossing occurs when not all combinations of factors
exist in the data.
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Hierarchical linear models (HLM)

Models with nested (hierarchical) structure.
Commonly used in psychology, education, and other social sciences
where survey data is naturally clustered hierarchically.

Junior School Project (1988)
Variables: student, class, school, gender, social, raven, math,
english, year
Nesting: school:class:student
Other variables crossed.

11



Plot our data - faraway:: jsp
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Plot our data
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Let’s try simple lm

glin <- lm(math ~ raven*gender*social,jspr)
anova(glin)

glin <- lm(math ~ raven*social,jspr)
anova(glin)

glin <- lm(math ~ raven+social,jspr)
summary(glin)
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Problems

1 All 953 students are independent?
2 Remember that they come from 50 different schools.

table(jspr$school)

##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## 26 11 14 24 26 18 11 27 21 0 11 23 22 13 7 16 6 18 14 13 28 14 18 21 14
## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49 50
## 20 22 15 13 27 35 23 44 27 16 28 17 12 14 10 10 41 5 11 15 33 63 22 14
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Include random effects

We need an analysis that uses the individual-level information, but also
reflects the grouping in the data.

mmod <-
lmer(math ~ raven * social * gender +
(1 | school) +
(1 | school:class), data = jspr)
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Model selection

all3 <- lmer(math ~ raven * social * gender +
(1 | school) + (1 | school:class),
data = jspr, REML = FALSE)

all2 <- update(all3, . ~ . - raven:social:gender)
notrs <- update(all2, . ~ . -raven:social)
notrg <- update(all2, . ~ . -raven:gender)
notsg <- update(all2, . ~ . -social:gender)
onlyrs <- update(all2, . ~ . -

social:gender-raven:gender)
all1 <- update(all2, . ~ . -social:gender -

raven:gender - social:raven)
nogen <- update(all1, . ~ . -gender)
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Model selection

anova(all3, all2, notrs, notrg, notsg, onlyrs, all1, nogen)[,1:4]

## Df AIC BIC logLik
## nogen 13 5954.3 6017.5 -2964.2
## all1 14 5955.6 6023.6 -2963.8
## onlyrs 22 5950.1 6057.0 -2953.1
## notrs 23 5961.6 6073.4 -2957.8
## notsg 23 5952.0 6063.8 -2953.0
## notrg 30 5956.1 6101.9 -2948.1
## all2 31 5957.8 6108.4 -2947.9
## all3 39 5966.7 6156.2 -2944.3
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Final model

jspr$craven <- jspr$raven-mean(jspr$raven)
mmod <- lmer(math ~ craven*social +

(1|school) +
(1|school:class), jspr)

sumary(mmod)
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Model diagnosis: fixed effects
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Model diagnosis: fixed effects
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Model diagnosis: random effects
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Model diagnosis: random effects
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Longitudinal data

Repeated measurements on each unit taken over
time.
Called “panel data” in econometrics. Called
“longitudinal data” in every other discipline.
Individuals treated as random effects
Differs from time series in having many units (e.g.,
people) but often not many observations per person.
i.e., Longitudinal data has large N, small T; Time
series data has small N, large T.
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Longitudinal data

For unit (individual) i, yi is a T-vector such that
yi|γi ∼ N(Xiβ + γi, σ2Λi)

γi ∼ N(0, σ2D) is effect of ith unit
Xi contains predictors for fixed effects
Λi handles autocorrelations within units
yi ∼ N(Xiβ,Σi) where Σi = σ2(Λi + D)
Assume individuals are independent, and random effects and errors
are uncorrelated.
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Longitudinal data

Combining individuals (assuming independence):

y =


y1
...
yN

 X =


X1
...
XN


Σ = diag(Σ1,Σ2, . . . ,ΣN),

y ∼ N(Xβ,Σ)

Only additional complication is choosing correlation structure
Other random effects can be added; then γi becomes a vector.
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