
International Journal of Forecasting xxx (xxxx) xxx

a

b

c

d
o
e
c
m
a
r
y
i
c
i
m
e

Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast

Forecast combinations: An over 50-year review
Xiaoqian Wang a, Rob J. Hyndman b, Feng Li c, Yanfei Kang a,∗

School of Economics and Management, Beihang University, Beijing 100191, China
Department of Econometrics & Business Statistics, Monash University, Clayton VIC 3800, Australia
School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 102206, China

a r t i c l e i n f o

Keywords:
Combination forecast
Cross learning
Forecast combination puzzle
Forecast ensembles
Model averaging
Open-source software
Pooling
Probabilistic forecasts
Quantile forecasts

a b s t r a c t

Forecast combinations have flourished remarkably in the forecasting community and,
in recent years, have become part of mainstream forecasting research and activities.
Combining multiple forecasts produced for a target time series is now widely used to
improve accuracy through the integration of information gleaned from different sources,
thereby avoiding the need to identify a single ‘‘best’’ forecast. Combination schemes
have evolved from simple combination methods without estimation to sophisticated
techniques involving time-varying weights, nonlinear combinations, correlations among
components, and cross-learning. They include combining point forecasts and combining
probabilistic forecasts. This paper provides an up-to-date review of the extensive
literature on forecast combinations and a reference to available open-source software
implementations. We discuss the potential and limitations of various methods and
highlight how these ideas have developed over time. Some crucial issues concerning
the utility of forecast combinations are also surveyed. Finally, we conclude with current
research gaps and potential insights for future research.
© 2022 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
1. Introduction

The idea of combining multiple individual forecasts
ates back to Francis Galton, who in 1906 visited an
x-weight-judging competition and observed that the av-
rage of 787 estimates of an ox’s weight was remarkably
lose to the ox’s actual weight; see Surowiecki (2005) for
ore details. About sixty years later, the work of Bates
nd Granger (1969) popularized the idea and spawned a
ich literature on forecast combinations. More than fifty
ears have passed since Bates and Granger’s (1969) sem-
nal work, and it is now well established that those fore-
ast combinations are beneficial. They offer substantially
mproved forecasts on average relative to constituent
odels; see Clemen (1989) and Timmermann (2006) for
xtensive literature reviews.
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This paper aims to present an up-to-date modern re-
view of the literature on forecast combinations over the
past five decades. We cover various forecast combination
methods for both point and probabilistic forecasts, con-
trasting them and highlighting how different related ideas
have developed in parallel.

Combining multiple forecasts derived from numerous
forecasting methods is often better than identifying a
single ‘‘best forecast’’. These are usually called ‘‘combi-
nation forecasts’’ or ‘‘ensemble forecasts’’ in different do-
mains. Observed time series data are unlikely to be gen-
erated by a simple process specified with a specific func-
tional form because of the possibility of time-varying
trends, seasonality changes, structural breaks, and the
complexity of real data generating processes (Clements
& Hendry, 1998). Thus, selecting a single ‘‘best model’’
to approximate the unknown underlying data generating
process may be misleading and is subject to at least three
sources of uncertainty: data uncertainty, parameter un-
certainty, and model uncertainty (Kourentzes et al., 2019;
Petropoulos et al., 2018a). Given these challenges, it is
ns: An over 50-year review. International Journal of Forecasting (2022),
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often better to combine multiple forecasts to incorpo-
rate multiple drivers of the data generating process and
mitigate uncertainties regarding model form and param-
eter specification.

Potential explanations for the strong performance of
orecast combinations are manifold. First, the combina-
ion is likely to improve forecasting performance when
ultiple forecasts to be combined incorporate partial (but

ncompletely overlapping) information. Second, structural
reaks are a common motivation for combining fore-
asts from different models (Timmermann, 2006). In the
resence of structural breaks and other instabilities, com-
ining forecasts from models with varying degrees of
isspecification and adaptability can mitigate the prob-

em, helping to explain the empirical success of fore-
ast combinations. See, e.g., Rossi (2013, 2021) for an
xtensive discussion on forecast combinations in the pres-
nce of instabilities. One can consider the competing fore-
asts as intercept correction relative to a baseline forecast.
his provides potential gains in forecast accuracy if there
re either structural breaks or deterministic misspecifi-
ations (Hendry & Clements, 2004). Finally, Hendry and
lements (2004) noted that forecast combination could be
n application of Stein–James shrinkage estimation (Judge
Bock, 1978). Specifically, if the unknown future value

s considered as a ‘‘meta-parameter’’ of which all the
ndividual forecasts are estimates, then averaging has the
otential to provide an improved estimate.
In light of their superiority, forecast combinations have

ppeared in a wide range of applications such as re-
ail (Ma & Fildes, 2021), energy (Xie & Hong, 2016), eco-
omics (Aastveit et al., 2019), and epidemiology (Ray
t al., 2022). Among all published forecasting papers in-
luded in the Web of Science, the proportion of papers
oncerning forecast combinations has been trending up-
ard over the past 50 years, reaching 13.80% in 2021,
s shown in Fig. 1. Consequently, reviewing the extant
iterature on this topic is timely and necessary.

The gains from forecast combinations rely on not only
he quality of the individual forecasts to be combined
ut the estimation of the combination weights assigned
o each forecast (Cang & Yu, 2014; Timmermann, 2006).
umerous studies have been devoted to discussing critical
ssues concerning the constitution of the model pool and
he selection of the optimal model subset, including but
ot limited to the accuracy, diversity, and robustness of
ndividual models (Batchelor & Dua, 1995; Kang et al.,
021; Lichtendahl & Winkler, 2020; Mannes et al., 2014;
homson et al., 2019). On the other hand, combination
chemes vary across studies. They have evolved from
imple combination methods that avoid weight estima-
ion (e.g., Clemen & Winkler, 1986; Genre et al., 2013;
rushka-Cockayne, Jose & Lichtendahl, 2017; Palm & Zell-
er, 1992; Petropoulos & Svetunkov, 2020) to sophisti-
ated methods that tailor weights for different individual
odels (e.g., Bates & Granger, 1969; Kang et al., 2021;
olassa, 2011; Li et al., 2020; Montero-Manso et al., 2020;
ewbold & Granger, 1974; Wang, Kang, Petropoulos &
i, 2022). Accordingly, forecast combinations can be lin-
ar or nonlinear, static or time-varying, series-specific or
ross-learning, and ignore or cover correlations among
2

individual forecasts. Despite the diverse set of forecast
combination schemes, forecasters still have little guidance
on solving the ‘‘forecast combination puzzle’’ (Chan &
Pauwels, 2018; Claeskens et al., 2016; Smith & Wallis,
2009; Stock & Watson, 2004) — simple averaging often
empirically dominates sophisticated weighting schemes
that should (asymptotically) be superior.

Initial work on forecast combinations after the seminal
work of Bates and Granger (1969) focused on dealing with
point forecasts (see, e.g., Clemen, 1989; Timmermann,
2006). In recent years considerable attention has moved
towards the use of probabilistic forecasts (e.g., Gneit-
ing & Ranjan, 2013; Hall & Mitchell, 2007; Kapetanios
et al., 2015; Martin et al., 2021) as they enable a rich
assessment of forecast uncertainties. When working with
probabilistic forecasts, issues such as diversity among in-
dividual forecasts can be more complex and less under-
stood than combining point forecasts (Ranjan & Gneiting,
2010). Additional problems such as calibration and sharp-
ness need to be considered when assessing or selecting a
combination scheme (Gneiting et al., 2007). Probabilistic
forecasts can be elicited in different forms (i.e., density
forecasts, quantiles, prediction intervals, etc.), and the re-
sulting combinations may have different properties such
as calibration, sharpness, and shape; see Lichtendahl et al.
(2013) for further analytical details.

We should clarify that we take the individual forecasts
to be combined as given and do not discuss how the fore-
casts are generated. We focus on combinations of multiple
forecasts derived from separate and non-interfering mod-
els for a given time series. Nevertheless, the literature
involves at least two other types of combinations that are
not covered in the present review. The first is the case of
generating multiple series from the single (target) series,
forecasting each of the generated series independently,
and then combining the outcomes. Such data manipu-
lation extracts more information from the target time
series, which, in turn, can be used to enhance the forecast-
ing performance. Petropoulos and Spiliotis (2021) referred
to this category of forecast combinations generally as
‘‘wisdom of the data’’ and provided an overview of ap-
proaches in this category. In this particular context, the
combination methods reviewed in this paper can function
as tools to aggregate (or combine) the forecasts computed
from different perspectives of the same data. The second
type of forecast combination we do not cover is fore-
cast reconciliation for hierarchical time series, which has
developed over the past ten years since the pioneering
work of Hyndman et al. (2011). Forecast reconciliation in-
volves reconciling forecasts across the hierarchy to ensure
that the forecasts sum appropriately across the hierarchy
levels, and hence is a type of forecast combination.

We note that forecast combination and model aver-
aging are sometimes used without distinction in the lit-
erature. The two terms overlap, but their focuses are
different. ‘‘Model averaging’’ is a general term allowing for
model uncertainty, particularly in parameter estimation,
which can lead to better estimates and more reliable
forecasts and prediction intervals than model selection
(selecting a single best model). Several approaches to
model averaging have been developed in statistics, econo-

metrics, and machine learning. Two main strands can be
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Fig. 1. The proportion of papers that concern forecast combinations among all published forecasting papers included in the Web of Science databases
during the publication year range 1969–2021. Specifically, we use the search query TS = (forecast*) to find all forecasting papers. To find papers
oncerning forecast combinations, we use TS = ((forecast* NEAR/5 combin*) OR (forecast* NEAR/5 ensemble*) OR (forecast* NEAR/5
verag*) OR (forecast* NEAR/5 aggregat*) OR (forecast* NEAR/5 pool*) OR (forecast* AND ((model* NEAR/5 combin*) OR (model*
EAR/5 ensemble*) OR (model* NEAR/5 averag*) OR (model* NEAR/5 aggregat*) OR (model* NEAR/5 pool*)))).
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dentified: frequentist approaches (e.g., Fletcher, 2018)
nd Bayesian approaches (e.g. Steel, 2020). ‘‘Forecast com-
ination’’ is a more focused terminology describing the
ombination of forecasts to generate a better forecast;
he component forecasts could be outcomes from model
veraging, individual models, or expert forecasts, e.g.. As
ith model averaging, weights can be used to combine
he component forecasts. Unlike model averaging, how-
ver, forecast combination also has some underlying as-
umptions to ensure that the forecast combinations are
nbiased or optimal.
This paper aims to contribute a broad perspective and

istorical overview of the main developments in fore-
ast combinations. The paper is organized into two main
ections on point forecast combinations (Section 2) and
robabilistic forecast combinations (Section 3). Section 4
oncludes the paper and identifies possible future devel-
pments.

. Point forecast combinations

.1. Simple point forecast combinations

A considerable literature has accumulated over the
ears regarding how individual forecasts are combined,
ith the unanimous conclusion that simple combina-
ion schemes are hard to beat (Clemen, 1989; Fischer &
arvey, 1999; Kang, 1986; Lichtendahl & Winkler, 2020;
tock & Watson, 2004). Equally weighted averages, which
gnore past information regarding the precision of indi-
idual forecasts and correlations between forecast errors,
ork reasonably well compared to more sophisticated
ombination schemes.
The vast majority of studies on combining multiple

orecasts have dealt with point forecasting, even though
oint forecasts (without associated measures of uncer-

ainty) provide insufficient information for decision-making. J

3

he simple arithmetic average of forecasts based on equal
eights stands out as the most popular and surprisingly
obust combination rule (see Bunn, 1985; Clemen & Win-
ler, 1986; Genre et al., 2013; Stock & Watson, 2003), and
an be effortlessly implemented.
An early example of an equally weighted combination

s from the M-competition, the first forecasting compe-
ition run by Spyros Makridakis and Michèle Hibon, in-
olving 1001 time series; see Makridakis et al. (1982)
nd Hyndman (2020) for more details of the competi-
ion. Makridakis et al. (1982) reported that the simple
verage outperformed the individual forecasting mod-
ls. Clemen (1989) provided an extensive bibliographical
eview of the early work on the combination of forecasts
nd addressed the issue that the arithmetic means often
ominate more refined forecast combinations. Makridakis
nd Winkler (1983) concluded that a larger number of in-
ividual methods included in the simple average scheme
ould help improve the accuracy of combined forecasts
nd reduce the variability associated with the selection of
ethods. Palm and Zellner (1992) concisely summarized

he advantages of adopting simple averaging into three
spects: (i) combination weights are equal and do not
ave to be estimated; (ii) simple averaging significantly
educes variance and bias by averaging out individual
ias in many cases; and (iii) simple averaging should be
onsidered when the uncertainty of weight estimation
s taken into account. Additionally, Timmermann (2006)
ointed out that the outstanding average performance of
imple averaging depends strongly on model instability
nd the ratio of forecast error variances associated with
ifferent forecasting models.
More attention has been given to other strategies,

ncluding using the median and mode, as well as trimmed
nd winsorized means (e.g., Chan et al., 1999; Genre
t al., 2013; Grushka-Cockayne, Jose & Lichtendahl, 2017;

ose et al., 2014; Stock & Watson, 2004), due to their
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robustness in the sense of being less sensitive to extreme
forecasts than a simple average (Lichtendahl & Winkler,
2020). For example, the early work of Galton (1907b)
observed that the ‘‘middlemost’’ of 787 estimates of an
ox’s weight is within nine pounds of the ox’s actual
weight, and thus advocated for the median forecast as
the ‘‘vox populi’’ (Galton, 1907a). However, there is little
consensus in the literature on whether the mean or the
median of individual forecasts performs better in point
forecasting (Kolassa, 2011). Specifically, McNees (1992)
found no significant difference between the mean and the
median, while the results of Stock and Watson (2004)
supported the mean and Agnew (1985), Galton (1907b)
recommended the median. Jose and Winkler (2008) stud-
ied the forecasting performance of the mean and median,
as well as the trimmed and winsorized means. Their
results suggested that the trimmed and winsorized means
appeal when there is high variability among the individ-
ual forecasts due to their simplicity and robust perfor-
mance. Kourentzes, Barrow and Crone (2014) empirically
compared the mean, mode, and median combination op-
erators based on kernel density estimation and found that
the three operators deal with outlying extreme values
differently, with the mean being the most sensitive and
the mode operator the least. Based on these experimental
results, they recommended further investigation of the
use of the mode and median operators, which have been
largely overlooked in the relevant literature.

Compared to various complicated combination ap-
roaches and machine learning algorithms, simple com-
inations seem outdated and uncompetitive in the big
ata era. However, the results from the recent M4 com-
etition (Makridakis et al., 2020a) showed that simple
ombinations continue to achieve relatively good fore-
asting performance and are still competitive. Specifi-
ally, a simple equal-weight combination ranked third for
early time series (Shaub, 2019) and a median combi-
ation of four simple forecasting models achieved sixth
lace for point forecasting (Petropoulos & Svetunkov,
020). Genre et al. (2013) encompassed a variety of com-
ination methods in the case of forecasting GDP growth
nd the unemployment rate. They found that the simple
verage sets a challenging benchmark, with few combina-
ion schemes outperforming it. Moreover, simple combi-
ations have a lower computational burden and can be
mplemented more efficiently than alternatives. There-
ore, simple combination rules have consistently been the
hoice of many researchers and practitioners, providing
challenging benchmark to measure the effectiveness of
he newly proposed weighted forecast combination algo-
ithms (e.g., Kang, Hyndman & Li, 2020; Makridakis & Hi-
on, 2000; Makridakis et al., 2020a; Montero-Manso et al.,
020; Stock & Watson, 2004; Wang, Kang, Petropoulos &
i, 2022).
Despite the ease of implementing simple combination

chemes, their success still depends largely on the choice
f the forecasts to be combined. Intuitively, we prefer that
he component forecasts fall on opposite sides of the truth
the realization) so that the forecast errors tend to cancel
ach other out (Bates & Granger, 1969; Larrick & Soll,
006). However, this rarely occurs in practice, as the com-
onent forecasts are usually trained based on overlapping
 a

4

information sets and use similar forecasting methods. If
all component forecasts are established similarly based
on the same, or highly overlapping sets of information,
forecast combinations are unlikely to improve forecast ac-
curacy. Mannes et al. (2014) and Lichtendahl and Winkler
(2020) emphasized two critical issues concerning the per-
formance of simple combination rules: one for the level
of accuracy (or expertise) of the forecasts in the pool and
another for diversity among individual forecasts. Involv-
ing forecasts with low accuracy in the pool can decrease
the combination performance. Additionally, a high de-
gree of diversity among component models facilitates the
achievement of the best possible forecast accuracy from
simple combinations (Thomson et al., 2019). In conclu-
sion, simple, easy-to-use combination rules can provide
excellent and robust forecasting performance, especially
when properly considering the accuracy and diversity of
the individual forecasts to be combined.

2.2. Linear combinations

Despite the simplicity and performance of simple com-
bination rules, it makes sense to assign greater weight to
the most accurate forecast methods. But how to choose
those weights? The problem of point forecast combi-
nations can be defined as seeking a one-dimensional
aggregator that integrates an N-dimensional vector of h-
step-ahead forecasts involving the information up to time
T , ŷT+h|T =

(
ŷT+h|T ,1, ŷT+h|T ,2, . . . , ŷT+h|T ,N

)′, into a single
ombined h-step-ahead forecast ỹT+h|T =(
ŷT+h|T ; wT+h|T

)
, where N is the number of forecasts

o be combined and wT+h|T is an N-dimensional vector
f combining weights. The class of combination meth-
ds represented by the mapping, C , comprises linear
nd nonlinear combinations, as well as series-specific
nd cross-learning combinations. Additionally, the com-
ination weights can be static or time-varying along the
orecasting horizon. Below we discuss various approaches
or determining combination weights associated with in-
ividual forecasts.
Typically, the combined forecast is constructed as a

inear combination of the individual forecasts, which can
e written as

˜T+h|T = w′

T+h|T ŷT+h|T ,

here wT+h|T =
(
wT+h|T ,1, . . . , wT+h|T ,N

)′ is an N-dimens
onal vector of linear combination weights assigned to N
ndividual forecasts.

ptimal weights
The seminal work of Bates and Granger (1969) pro-

osed a method to find the so-called ‘‘optimal’’ weights
y minimizing the variance of the combined forecast
rror and discussed only combinations of pairs of fore-
asts. Newbold and Granger (1974) then extended the
ethod to combinations of more than two forecasts.
pecifically, if the individual forecasts are unbiased and
heir error variances are consistent over time, then the
ombined forecast obtained by a linear combination will
lso be unbiased. Differentiating with respect to w
T+h|T
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and solving the first-order condition, the variance of the
combined forecast error is minimized by taking

w
opt
T+h|T =

Σ−1
T+h|T1

1′Σ−1
T+h|T1

, (1)

where Σ T+h|T is the N × N covariance matrix of the
h-step forecast errors and 1 is an N-dimensional unit
vector. This is implemented, e.g., in the R package Fore-
castComb (Weiss et al., 2018). In practice, the elements
of the covariance matrix Σ T+h|T are usually unknown and
need to be estimated.

It follows that if wT+h|T is determined by Eq. (1), one
can identify a combined forecast ỹT+h|T with no greater
error variance than the minimum error variance of all
individual forecasts. The fact was further explored by Tim-
mermann (2006) to illustrate the diversification gains
offered by forecast combinations by simply considering
combinations of pairs of forecasts. Under mean squared
error (MSE) loss, Timmermann (2006) characterized the
general solution of the optimal linear combination weights
by assuming a joint Gaussian distribution of the outcome
yT+h and available forecasts ŷT+h|T .

The loss assumed in Bates and Granger (1969) and
Newbold and Granger (1974) is quadratic and symmet-
ric. Elliott and Timmermann (2004) examined forecast
combinations under more general loss functions account-
ing for asymmetries and skewed forecast error distribu-
tions. They demonstrated that the optimal combination
weights strongly depend on the degree of
asymmetry in the loss function and skewness in the un-
derlying forecast error distributions. Subsequently, Patton
and Timmermann (2007) demonstrated that the prop-
erties of optimal forecasts established under MSE loss
are not generally robust under more general assumptions
about the loss function. In addition, the properties of op-
timal forecasts were generalized to consider asymmetric
loss and nonlinear data generating processes.

Regression-based weights
The seminal work by Granger and Ramanathan (1984)

provided an important impetus for approximating the
‘‘optimal’’ weights under a linear regression framework.
They recommended that the combination weights be esti-
mated by ordinary least squares (OLS) in regression mod-
els with the vector of past observations as the response
variable and the matrix of past individual forecasts as the
predictor variables. Three alternative approaches impos-
ing various possible restrictions were considered

yT+h = w′

T+h|T ŷT+h|T + εT+h, s.t. w′1 = 1, (2)

yT+h = w′

T+h|T ŷT+h|T + εT+h, (3)

yT+h = wT+h|T ,0 + w′

T+h|T ŷT+h|T + εT+h. (4)

The R package ForecastComb (Weiss et al., 2018) pro-
vides the corresponding implementations. The constrained
OLS estimation of the regression in Eq. (2), in which
the constant is omitted, and the weights are constrained
to sum to one, yields results identical to the ‘‘optimal’’
weights proposed by Bates and Granger (1969). Granger
and Ramanathan (1984) further suggested that the un-

restricted OLS regression in Eq. (4), which allows for

5

a constant term and does not require the weights to
sum to one, is superior to the popular ‘‘optimal’’ method
regardless of whether the constituent forecasts are biased.
However, De Menezes et al. (2000) argue that when
using the unrestricted regression, one needs to consider
the stationarity of the series being forecast, the possible
presence of serial correlation in forecast errors (see also
Coulson & Robins, 1993; Diebold, 1988), and the issue of
multicollinearity.

Generalizations of the combination regressions have
been considered in a large body of literature. Diebold
(1988) exploited serial correlated errors in the least
squares framework by characterizing the combined fore-
cast errors as autoregressive moving average (ARMA) pro-
cesses, leading to improved combined forecasts. Gunter
(1992) and Aksu and Gunter (1992) provided an em-
pirical analysis to compare the performance of various
combination strategies, including the simple average, the
unrestricted OLS regression, the restricted OLS regres-
sion where the weights are constrained to sum to unity,
and the restricted OLS regression where the weights are
constrained to be nonnegative. The results revealed that
constraining weights to be nonnegative is at least as
robust and accurate as the simple average and yields
superior results compared to other combinations based on
a regression framework. Conflitti et al. (2015) addressed
the problem of determining the combination weights
by imposing both restrictions (that the weights should
be nonnegative and sum to one), which turns out to
be a special case of a LASSO regression. Coulson and
Robins (1993) found that allowing a lagged dependent
variable in forecast combination regressions can improve
performance. Instead of using the quadratic loss func-
tion, Nowotarski et al. (2014) applied the absolute loss
function in the unrestricted regression, also implemented
in the ForecastComb package for R, to yield the least
absolute deviation regression, which is more robust to
outliers than OLS combinations.

Forecast combinations using changing weights have
also been developed to solve structural changes in con-
stituent forecasts. For instance, Diebold and Pauly (1987)
explored rolling weighted least squares and time-varying
parameter techniques in the basic regression framework,
including both deterministic and stochastic time-varying
parameters. Specifically, the combination weights are ei-
ther described as deterministic nonlinear (polynomial)
functions of time or allowed to involve random vari-
ation. They showed, via numerical examples based on
various types of structural change in the constituent fore-
casts, that time-varying weights substantially help im-
prove forecasting ability in instabilities. Deutsch et al.
(1994) allowed the combination weights to evolve im-
mediately or smoothly using switching regression models
and smooth transition regression models. Terui and van
Dijk (2002) generalized the regression method by in-
corporating time-varying coefficients assumed to follow
a random walk process. The generalized model can be
interpreted as a state space model and then estimated
using Kalman filter updating. Following the spirit of Terui
and van Dijk (2002), Raftery et al. (2010) achieved an
accelerated inference process by using forgetting factors

in the recursive Kalman filter updating.
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Researchers have also worked on including many fore-
asts in a regression framework to take advantage of
any models. However, Chan et al. (1999) examined a
ide range of combination methods and showed that
LS combinations have very poor performance when N
the number of forecasts to be combined) is very large.
actor methods are a common way of condensing infor-
ation when modeling and forecasting. They have also
een used explicitly in forecast combination settings and
re especially attractive when the number of forecasts
o be combined is very large (N > T ); see, e.g., Chan
t al. (1999) for a dynamic factor model framework for
orecast combinations. The common factors in approxi-
ate dynamic factor models can be estimated by principal
omponents (Stock & Watson, 1999). Principal compo-
ents regression (PCR) is typically motivated as an ad hoc
ool for the solution of multicollinearity. Chan et al. (1999)
nd Stock and Watson (2004) explicitly applied PCR to
orecast combinations, resulting in a two-step procedure.
he first step extracts the principal components, while the
econd produces the final forecasts utilizing OLS regres-
ion. The superiority of PCR over OLS combinations was
lso supported by Rapach and Strauss (2008) and Poncela
t al. (2011). In turn, these methods relate to the question
f whether one should forecast with variables (competing
oint forecasts in our paper’s context), factors (extracted
rom the N competing forecasts), or both; see, e.g., Castle
t al. (2013) for a detailed discussion.
In large N cases, given the estimation problems that

rise when N > T , researchers also frequently relate fore-
ast combinations to shrinkage-type approaches (whether
requentist or Bayesian) that facilitate estimation of the
orecast combination regression even when N > T ,
.g., see Stock andWatson (2004). Diebold and Shin (2019)
onsidered methods for selection and shrinkage in
egression-based forecast combinations to address the
stimation problem. They shed light on how machine
earning can optimally combine a large set of forecasts by
ntroducing a LASSO-based procedure consisting of two
teps. The first step involves setting some combination
eights to zero using LASSO, and the second step shrinks
he combination weights of the survivors toward equal
eights. Additionally, Aiolfi and Timmermann (2006) ar-
ued in favor of clustering the individual forecasts using
he k-means clustering algorithm based on their histor-
cal performance. For each cluster, a pooled (average)
orecast is computed, which precedes the estimation of
ombination weights for the constructed clusters.

erformance-based weights
Estimation errors in the ‘‘optimal’’ and regression-

ased weights tend to be particularly large due to dif-
iculties in adequately estimating the covariance matrix

T+h|T , especially in situations with many forecasts to
ombine. Instead, Bates and Granger (1969) suggested
eighing the constituent forecasts in inverse propor-
ion to their historical performance, ignoring mutual de-
endence. In follow-up studies, Newbold and Granger
1974) and Winkler and Makridakis (1983) generalized
his idea by considering more time series, more individual
orecasts, and multiple forecast horizons. Their extensive
6

results demonstrated that combinations ignoring corre-
lations are more successful than those attempting to
take account of correlations, and consequently recon-
firmed Bates and Granger’s (1969) argument that corre-
lations can be poorly estimated in practice and should be
ignored when calculating combination weights.

Let eT+h|T = 1yT+h − ŷT+h|T be the N-dimensional vec-
or of h-step forecast errors computed from the individual
orecasts. Then the five procedures suggested in Bates and
ranger (1969) for estimating the combination weights
henΣ T+h|T is unknown are extended to the general case
s follows:

bg1
T+h|T ,i =

(∑T
t=T−ν+1 e

2
t|t−h,i

)−1

∑N
j=1

(∑T
t=T−ν+1 e

2
t|t−h,j

)−1 ; (5)

bg2
T+h|T =

Σ̂
−1
T+h|T1

1′Σ̂
−1
T+h|T1

,

where (Σ̂ T+h|T )i,j = ν−1
T∑

t=T−ν+1

et|t−h,iet|t−h,j; (6)

w
bg3
T+h|T ,i = αŵT+h−1|T−1,i + (1 − α)

×

(∑T
t=T−ν+1 e

2
t|t−h,i

)−1

∑N
j=1

(∑T
t=T−ν+1 e

2
t|t−h,j

)−1 , where 0 < α < 1;

(7)

bg4
T+h|T ,i =

(∑T
t=1 γ te2t|t−h,i

)−1

∑N
j=1

(∑T
t=1 γ te2t|t−h,j

)−1 , where γ ≥ 1; (8)

w
bg5
T+h|T =

Σ̂
−1
T+h|T1

1′Σ̂
−1
T+h|T1

,

where (Σ̂ T+h|T )i,j =

∑T
t=1 γ tet|t−h,iet|t−h,j∑T

t=1 γ t
and γ ≥ 1.

(9)

These weighting schemes differ in the factors and the
choice of the parameters, ν, α, and γ . Correlations across
forecast errors are either ignored by treating the covari-
ance matrix Σ T+h|T as a diagonal matrix or estimated via
the usual sample estimator (which may lead to quite un-
stable estimates ofΣ T+h|T given highly correlated forecast
errors). Some estimation schemes suggest computing or
updating the relative performance of individual forecasts
over rolling windows of the most recent ν observations.
In contrast, others base the weights on exponential dis-
counting with higher values of γ giving larger weights to
more recent observations. Consequently, these weighting
schemes are well adapted to allow a non-stationary re-
lationship between the individual forecasting procedures
over time (Newbold & Granger, 1974). However, they tend
to increase the variance of the parameter estimates and
work quite poorly if the data generating process is truly
covariance stationary (Timmermann, 2006).

A broader set of combination weights based on the

relative performance of individual forecasting techniques
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has been developed and examined in a series of studies.
For example, Stock and Watson (1998) generalized the
rolling window scheme in Eq. (5) in the sense that the
weights on the individual forecasts are inversely pro-
portional to the kth power of their MSE. The weights
with k = 0 correspond to assigning equal weights to
all forecasts, while more weights are placed on the best-
performing forecasts by considering k ≥ 1. Other forms
of forecast error measures, such as the root mean squared
error (RMSE) and the symmetric mean absolute percent-
age error (sMAPE), have also been considered to lead to
performance-based combination weights (e.g., Nowotarski
et al., 2014; Pawlikowski & Chorowska, 2020). A weight-
ing scheme with the weights depending inversely on the
exponentially discounted errors was proposed by Stock
and Watson (2004) as an upgraded version of the scheme
in Eq. (8). It was used in several subsequent studies (e.g.,
Clark & McCracken, 2010; Genre et al., 2013) to achieve
gains from combining forecasts. The pseudo-out-of-sample
performance used in these weighting schemes is com-
monly computed based on rolling or recursive (expand-
ing) windows (e.g., Clark & McCracken, 2010; Genre et al.,
2013; Stock & Watson, 1998). It is natural to adopt rolling
windows in estimating the weights to deal with struc-
tural changes, but the window length should not be too
short without the estimates of the weights becoming too
noisy (Baumeister & Kilian, 2015).

Compared to directly constructing the weights using
historical forecast errors, a new form of combinations
that is more robust and less sensitive to outliers was
introduced based on the ‘‘ranking’’ of individual fore-
casts. Again this kind of combination ignores correla-
tions among forecast errors. The class’s simplest and most
commonly used method uses the median forecast as the
output. Aiolfi and Timmermann (2006) constructed the
weights proportional to the inverse of performance ranks
(sorted according to increasing order of forecast errors),
which were later employed by Andrawis et al. (2011)
for tourism demand forecasting. The R package Forecast-
Comb (Weiss et al., 2018) provides tools for rank-based
combinations. Another weighting scheme which attaches
a weight proportional to exp(β(N + 1 − i)) to the ith
ordered constituent forecast was adopted in Yao and Is-
lam (2008) and Donate et al. (2013) to combine forecasts
obtained from artificial neural networks (ANNs), where β

is a scaling factor. However, as mentioned by Andrawis
et al. (2011), this class of combination methods limits the
weights to only a discrete set of possible values.

Criteria-based weights
Information criteria, such as Akaike’s information cri-

terion (AIC, Akaike, 1974), the corrected Akaike infor-
mation criterion (AICc, Sugiura, 1978), and the Bayesian
information criterion (BIC, Schwarz, 1978), are often used
for model selection in forecasting. However, choosing a
single model out of the candidate model pool may be
misleading because of the information loss from the alter-
native models. An alternative approach proposed by Burn-
ham and Anderson (2002) is to combine multiple models
based on information criteria to mitigate the risk of se-

lecting a single model. It is also worth mentioning that
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the R packages MuMIn (Bartoń, 2022) and mmSAR (Guil-
haumon, 2019) have been developed to perform model
selection and multimodel averaging based on the use of
information-theoretic approaches introduced by Burnham
and Anderson (2002).

One such common approach is using Akaike weights.
Specifically, because AIC estimates the Kullback–Leibler
distance (Kullback & Leibler, 1951) between a model and
the true data generating process, differences in the AIC
can be used to weight different models, providing a mea-
sure of the evidence for supporting a given model relative
to other constituent models. Given N individual models,
the Akaike weight of model i can be derived as:

waic
T+h|T ,i =

exp(−0.5∆AICi)∑N
k=1 exp (−0.5∆AICk)

,

where ∆AICi = AICi − min
k∈{1,2,...,N}

AIC(k).

Akaike weights calculated in this manner can be inter-
preted as the probability that a given model performs
best at approximating the unknown data generating pro-
cess, given the model set and the available and historical
data (Kolassa, 2011). Similar weights from AICc, BIC, and
other variants with different penalties, can be derived
analogously.

The outstanding performance of weighted combina-
tions based on information criteria has been supported in
several studies. For instance, Kolassa (2011) used weights
derived from AIC, AICc, and BIC to combine exponential
smoothing forecasts and obtained superior accuracy over
selecting a model using the same information criteria. A
similar strategy was adopted by Petropoulos et al. (2018a)
to separately explore the benefits of bootstrap aggrega-
tion (bagging) for time series forecasting. Additionally, an
empirical study by Petropoulos, Kourentzes et al. (2018)
showed that a weighted combination based on AIC im-
proves the performance of the statistical benchmark they
used.

Bayesian weights
Some effort has been directed towards Bayesian ap-

proaches to updating forecast combination weights in the
face of new information gleaned from various sources.
Recall that obtaining reliable estimates of the covariance
matrix Σ (the time and horizon subscripts are dropped
for simplicity) of forecast errors is a major challenge in
practice, regardless of whether correlations among fore-
cast errors are ignored or not. With this in mind, Bunn
(1975) suggested the idea of Bayesian combinations based
on the probability of each forecasting model performing
the best on any given occasion. By considering the beta
and Dirichlet distributions as the conjugate priors for the
binomial and multinomial processes, the suggested non-
parametric method performs well when there is relatively
little past data by attaching prior subjective probabilities
to individual forecasts (Bunn, 1985; De Menezes et al.,
2000). Öller (1978) presented another approach to us-
ing subjective probability in a Bayesian updating scheme
based on the self-scoring weights proportional to the

evaluation of the expert’s forecasting ability.



X. Wang, R.J. Hyndman, F. Li et al. International Journal of Forecasting xxx (xxxx) xxx

i
c
t
b
t
d
B

w
m
t
e
p
a
w
r
c

y

w
a

A different strand of research has also advocated the
ncorporation of prior information into the estimation of
ombination weights, but with the weights being shrunk
oward some prior mean under a regression-based com-
ination framework (Newbold & Harvey, 2004). Assuming
hat the vector of forecast errors is normally
istributed, Clemen and Winkler (1986) developed a
ayesian approach with the conjugate prior for Σ rep-

resented by an inverted Wishart distribution with covari-
ance matrix Σ 0 and scalar degrees of freedom ν0. Again
we drop time and horizon subscripts for simplicity. If the
last T observations are used to estimate Σ , the combina-
tion weights derived from the posterior distribution for
Σ are

wcw
=

Σ ∗1
1′Σ ∗1

,

here Σ ∗
=

(
ν0Σ

−1
0 + TΣ̂

−1)
/(ν0 + T ) is the precision

atrix and Σ̂ is the sample covariance matrix. Compared
o estimating Σ using the standard sample covariance
stimator or treating it as a diagonal matrix, the pro-
osed approach provides a more stable estimation and
llows for correlations between methods. The subsequent
ork by Diebold and Pauly (1990) allowed the incorpo-
ation of the standard normal-gamma conjugate prior by
onsidering a normal regression-based combination

= Ŷw + ε, ε ∼ N
(
0, σ2I

)
,

here y and ε are T -dimensional vectors of historical data
nd residuals, respectively, and Ŷ is the T × N matrix

of one-step constituent forecasts. This approach results
in estimated combination weights that can be viewed
as a matrix-weighted average of those for the two polar
cases (least squares and prior weights). It can provide a
rational transition between the subjective and data-based
estimation of the combination weights. Because Bayesian
approaches have been mostly employed to construct com-
binations of probability forecasts, we will elaborate on
other newly developed methods of determining combina-
tion weights from a foundational Bayesian perspective in
Section 3.7.

2.3. Nonlinear combinations

Linear combination approaches implicitly assume a
linear dependence between constituent forecasts and the
variable of interest (Donaldson & Kamstra, 1996; Fre-
itas & Rodrigues, 2006), and may not result in the best
forecast (Shi et al., 1999). This is especially true if the
individual forecasts come from nonlinear models or if the
relationship between combination members and the best
forecast is characterized by nonlinear systems (Babikir
& Mwambi, 2016). In such cases, it is natural to relax
the linearity assumption and consider nonlinear combi-
nation schemes of higher complexity; these have received
minimal research attention.

As Timmermann (2006) identified, two types of non-
linearities can be incorporated in forecast combinations.
One involves nonlinear functions of the individual fore-
casts but with the unknown parameters of the combina-

tion weights given in the linear form. The other allows
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a more general combination with nonlinearities directly
considered in the combination parameters. Neural net-
works are often employed to estimate nonlinear mapping
because they offer the potential to learn the underlying
nonlinear relationship between the future outcome and
individual forecasts. The design of a neural network model
is time-consuming and sometimes leads to overfitting and
poor forecasting performance as more parameters need to
be estimated.

Donaldson and Kamstra (1996) used ANNs to obtain
the combined forecasts ỹT+h|T by the following form

ỹT+h|T = β0 +

k∑
j=1

βjŷT+h|T ,j +

p∑
i=1

δig(zT+h|Tγ i),

(10)

g(zT+h|Tγ i) =

⎛⎝1 + exp
{
−

(
γ0,i +

N∑
j=1

γ1,jzT+h|T ,j

)}⎞⎠−1

,

(11)

where zT+h|T ,j = (ŷT+h|T ,j − ȳ)/σ̂ , ȳ and σ̂ denote the
in-sample mean and in-sample standard deviation respec-
tively, k ∈ {0,N}, and p ∈ {0, 1, 2, 3}. This approach
permits special cases of both purely linear combinations
(k = N and p = 0) and nonlinear combinations (k = 0
and p ̸= 0). Building on this, Harrald and Kamstra (1997)
proposed to evolve ANNs and demonstrated their utility,
but only using a single time series. Krasnopolsky and Lin
(2012) and Babikir and Mwambi (2016) employed neural
network approaches with various activation functions to
approximate the nonlinear dependence of individual fore-
casts and achieve nonlinear mapping, resulting in variants
of Eq. (10). The empirical results of nonlinear combina-
tions from these studies generally dominate those from
traditional linear combination strategies, such as simple
average, OLS weights, and performance-based weights.
However, the empirical evidence is based on fewer than
ten time series, possibly hand-picked to lead to this re-
sult. Additionally, these nonlinear combination methods
suffer from other drawbacks, including the neglect of
correlations among forecast errors, the instability of pa-
rameter estimation, and the multicollinearity caused by
the overlap in the information sets used to produce indi-
vidual forecasts. Thus, the performance of nonlinear com-
binations relative to linear combinations needs further
investigation.

Some researchers have sought to construct nonlin-
ear combinations by including an additional nonlinear
term to cope with the case where individual forecast
errors are correlated. The combination mechanism can be
generalized to the following form

ỹT+h|T = β0 +

N∑
j=1

βjŷT+h|T ,j +

N∑
i,j=1
i<j

πijvij,

where vij is some nonlinear combination of forecasts i and
j. This way, the general framework for linear combinations

is extended to deal with nonlinearities.
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For example, Freitas and Rodrigues (2006) defined vij
as the product of individual forecasts from different mod-
els, vij = ŷT+h|T ,iŷT+h|T ,j. In contrast, Adhikari and Agrawal
(2012) took into account the linear correlations among
the forecast pairs by including the term, vij = (ŷT+h|T ,i −

ȳi)(ŷT+h|T ,j − ȳj)/(σiσj)2, where ȳi and σi are the mean
and standard deviation of the ith model, respectively.
Moreover, Adhikari (2015) defined the nonlinear term
using vij =

(
ẑi − mijẑj

) (
ẑj − mjiẑi

)
, where ẑi denotes the

standardized ith individual forecast using the mean ȳi and
standard deviation σi, and the termmij denotes the degree
of mutual dependency between the ith and jth individual
forecasts.

Nonlinearly combining forecasts requires further re-
search. In particular, the forecasting performance of the
various proposed nonlinear combination schemes should
be investigated appropriately with an extensive, diverse
collection of time series datasets and appropriate statis-
tical inference. There is also a need to develop nonlinear
combination approaches that take account of
correlations across forecast errors and the multicollinear-
ity of forecasts.

2.4. Combining by learning

Stacked generalization (stacking, Wolpert, 1992) pro-
vides a strategy to combine the available forecasting mod-
els adaptively. Stacking is frequently employed on a wide
variety of classification tasks (Zhou, 2012); in the time se-
ries forecast context, it uses the concept of meta-learning
to boost forecasting accuracy beyond that achieved by any
of the individual models. Stacking is a general framework
that comprises at least two levels. The first level involves
training the individual forecasting models
using the original data. In contrast, the second and sub-
sequent levels utilize an additional ‘‘meta-model’’, us-
ing the prior level forecasts as inputs to form a set of
forecasts. Thus, the stacking approach to forecast com-
binations weights individual forecasts adaptively using
meta-learning processes.

There are many ways to implement the stacking strat-
egy. Its primary implementation is to combine individual
models in a series-by-series fashion. Individual forecast-
ing models in the method pool are trained using only
data from the single series they are going to forecast. In
contrast, their forecast outputs are subsequently fed to
a meta-model tailored to calculate the combined fore-
casts for the target series. This means that n meta-models
are required for n separate time series data. Unsurpris-
ingly, regression-based weight combinations discussed in
Section 2.2 (e.g., Granger & Ramanathan, 1984; Gunter,
1992) fall into this category and can be viewed as the
most simple, common learning algorithm used in stack-
ing. Instead of applying multiple linear regressions, Moon
et al. (2020) suggested a PCR model as the meta-model
predominantly due to its desirable characteristics, such as
dimensionality reduction and avoidance of multicollinear-
ity between the input forecasts of individual models. Sim-
ilarly, LASSO regression, ANN, wavelet neural network
(WNN), and support vector regression (SVR) can be con-

ducted in a series-by-series fashion to achieve the same
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goal (e.g., Conflitti et al., 2015; Donaldson & Kamstra,
1996; Ribeiro et al., 2019; Ribeiro & dos Santos Coelho,
2020). One could use an expanding or rolling window
method to ensure that enough individual forecasts are
generated for the training of meta-models. Time series
cross-validation, also known as ‘‘evaluation on a rolling
forecasting origin’’ (Hyndman & Athanasopoulos, 2021), is
also recommended in the training procedures for individ-
ual models and meta-models to help with the parame-
ter estimation. Nevertheless, stacking approaches imple-
mented in a series-by-series fashion still suffer from some
limitations, such as requiring a long computation time
and time series and inefficiently using the training data.

An alternative way to perform the stacking strategy
sheds some light on the potential of cross-learning. Specif-
ically, the meta-model is trained using information de-
rived from multiple time series rather than employing
only a single series. Thus, various patterns can be captured
along different series. The M4 competition organized by
Spyros Makridakis et al. (2020a), comprising 100,000 time
series, recognized the benefits of cross-learning in the
sense that the top three performing methods of the com-
petition utilize the information across the whole dataset
rather than a single series. Cross-learning can therefore be
identified as a promising strategy to boost forecasting ac-
curacy, at least when appropriate techniques for extract-
ing information from large, diverse time series datasets
are adopted (Kang, Spiliotis et al., 2020; Semenoglou et al.,
2020). Zhao and Feng (2020) trained a neural network
model across the M4 competition dataset to learn how
to combine individual models in the method pool. They
adopted the temporal holdout strategy to generate the
training dataset and utilized only the out-of-sample fore-
casts produced by standard individual models as the input
for the neural network model.

An increasing stream of studies has shown that time
series features characterizing each series in a dataset pro-
vide valuable information for forecast combinations in a
cross-learning fashion, leading to an extension of stacking.
Numerous software packages have been developed for
time series feature extraction, including the R packages
feasts (O’Hara-Wild et al., 2021) and tsfeatures (Hynd-
man et al., 2019), the Python packages Kats (team, 2021),
tsfresh (Christ et al., 2018) and TSFEL (Barandas et al.,
2020), the Matlab package hctsa (Fulcher & Jones, 2017),
and the C-coded package catch22 (Lubba et al., 2019).
These sets of time series features were empirically evalu-
ated by Henderson and Fulcher (2021).

The pioneering work by Collopy and Armstrong (1992)
developed a rule base consisting of 99 rules to combine
forecasts from four statistical models using 18 time series
features. Petropoulos, Makridakis et al. (2014) identified
the main determinants of forecasting accuracy through
an empirical study involving 14 forecasting models and
seven time series features. The findings can provide use-
ful information for forecast combinations. More recently,
Montero-Manso et al. (2020) introduced a Feature-based
FORecast Model Averaging (FFORMA) approach, avail-
able in the R package M4metalearning (Montero-Manso,
2019). This approach employs 42 statistical features (im-
plemented using the R package tsfeatures) to estimate
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the optimal weights for combining nine different tradi-
tional models trained per series based on an XGBoost
model. The FFORMA method reported the second-best
forecasting accuracy in the M4 competition. Addition-
ally, Ma and Fildes (2021) highlighted the potential of
convolutional neural networks as a meta-model to link
the learned features with a set of combination weights. Li
et al. (2020) extracted time series features automatically
with the idea of time series imaging, and then these fea-
tures were used for forecast combinations. Gastinger et al.
(2021) demonstrated the value of a collection of combina-
tion methods on a large and diverse amount of time series
from the M3 (Makridakis & Hibon, 2000), M4, M5 (Makri-
dakis et al., 2022) datasets and FRED datasets1. Because
t is unclear which combination strategy should be se-
ected, they introduced a meta-learning step to choose
promising subset of combination methods for a newly
iven dataset based on extracted features.
In addition to the time series features extracted from

he historical data, it is crucial to look at the diversity of
he individual model pool in the context of forecast com-
inations (Atiya, 2020; Batchelor & Dua, 1995; Lichten-
ahl & Winkler, 2020; Thomson et al., 2019). An increase
n diversity among forecasting models has the potential
o improve the accuracy of their combination. In this
espect, features measuring the diversity of the method
ool should be included in the feature pool to provide
dditional information possibly relevant to combining
odels. Lemke and Gabrys (2010) calculated six diversity

eatures and created an extensive feature pool describing
oth the time series and the individual method pool.
hree meta-learning algorithms were implemented to
ink knowledge of the performance of individual models
ith the extracted features and to improve forecast-

ng performance. Kang et al. (2021) utilized a group of
eatures only measuring the diversity across the candi-
ate forecasts to construct a forecast combination model
apping the diversity matrix to the forecast errors. The
roposed approach yielded comparable forecasting per-
ormance with the top-performing methods in the M4
ompetition.
As expected, the implementations of stacking in a

ross-learning manner also come with limitations. The
irst limitation is the requirement for a large, diverse time
eries dataset to enable meaningful training outcomes.
his issue can be addressed by simulating series based
n some assumed data generating processes (Talagala
t al., 2018) (implemented using the R package fore-
ast, Hyndman et al., 2021), or by generating time series
ith diverse and controllable characteristics (Kang, Hyn-
man & Li, 2020) (implemented in the R package gratis,
ang, Li et al., 2020). Moreover, given the considerable
iterature on feature identification and feature engineer-
ng (e.g., Kang et al., 2017; Lemke & Gabrys, 2010; Li et al.,
020; Montero-Manso et al., 2020; Wang et al., 2009),
he feature-based forecast combination methods naturally
aise some issues that are yet to receive much research
ttention. These include how to design an appropriate

1 The FRED (Federal Reserve Economic Data) dataset is openly
available at https://fred.stlouisfed.org.
10
feature pool to achieve the best out of such methods and
which is the best loss function for the meta-model.

It is also worth mentioning that many neural network
models rely on a model combination strategy, namely
‘‘ensembling’’ (see, e.g., Caruana et al., 2004, a popular
work in the machine learning context), that is applied
internally to improve the overall forecasting performance.
Due to the weak learning process in deep learning mod-
els, the overall forecasting results heavily depend on the
combination of each forecasting result. They diversify
the individual forecast via (1) varying the training data,
(2) varying the model pool, and (3) varying the evaluation
metric. For example, the N-BEATS model (Oreshkin et al.,
2019) utilized different strategies to diversify the fore-
casting results. For each forecasting horizon, individual
models are trained with six window lengths. It also used
three metrics sMAPE, MASE, and MAPE, to validate each
model. In the end, various models are used to make the
median ensemble for results on the test set. One may refer
to Ganaie et al. (2022) for a general view of deep learning
ensembles.

2.5. Which forecasts should be combined?

Including forecast methods with poor accuracy de-
grades the performance of the forecast combination. One
prefers to exclude component forecasts that perform poorl
and to combine only the top performers. In judgmental
forecasting, Mannes et al. (2014) highlighted the impor-
tance of the crowd’s mean level of accuracy (expertise).
They argued that the mean level of knowledge sets a floor
for the performance of combining. The gains in accuracy
from selecting top-performing forecasts for combination
have been investigated and confirmed by a stream of
articles such as Budescu and Chen (2015) and Kourentzes
et al. (2019). Lichtendahl and Winkler (2020) emphasized
that the variance of accuracy across time series, which
indicates the accuracy risk, exerts a significant influ-
ence on the performance of the combined forecasts. They
suggested balancing the trade-offs between the average
accuracy and the variance of accuracy when choosing
component models from a set of available models.

Another critical issue is diversity. Diversity among the
individual forecasts is often recognized as one of the ele-
ments required for accurate forecast combination (Batch-
elor & Dua, 1995; Brown et al., 2005; Thomson et al.,
2019). Atiya (2020) utilized the bias–variance decomposi-
tion of MSE to study the effects of forecast combinations
and confirmed that an increase in diversity among the
individual forecasts is responsible for the error reduction
achieved in combined forecasts. Diversity among individ-
ual forecasts is frequently measured in terms of correla-
tions among their forecast errors, with lower correlations
indicating a higher degree of diversity. The distance of
top-performing clusters introduced by Lemke and Gabrys
(2010), where a k-means clustering algorithm is applied
to construct clusters, and a measure of coherence pro-
posed by Thomson et al. (2019) are also considered as
other measures to reflect the degree of diversity among

forecasts.

https://fred.stlouisfed.org
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In an analysis of a winner-take-all forecasting com-
etition, Lichtendahl Jr et al. (2013) found that the op-
imal strategy for reporting forecasts is to exaggerate
he forecasters’ private information and down-weight any
ommon information. This exaggeration results in gains
n the accuracy of the simple average by amplifying the
iversity of the individual forecasts. The gains were con-
irmed by Grushka-Cockayne, Jose and Lichtendahl (2017),
ho looked more closely at the impact of private-signal
xaggeration on forecast combinations, which translates
nto averaging forecasts that are overfitted and overcon-
ident.

Ideally, we would choose independent forecasts to
mplify the diversity of the component forecasts when
orming a combination. However, the available individual
orecasts are often produced based on similar training,
imilar models, and overlapping information sets, leading
o highly positively correlated forecast errors. Including
orecasts that have highly correlated forecast errors in
combination creates redundancy and may result in

nstable weights, especially in the class of regression-
ased combinations (see Section 2.2). In this respect, us-
ng different types of forecasting models (e.g., statistical,
achine learning, and judgmental) or different sources of

nformation (e.g., exogenous variables), can help improve
iversity (Atiya, 2020). The results of the M4 competition
econfirmed the benefits of combinations of statistical and
achine learning models (Makridakis et al., 2020a).
It is often suggested that a subset of individual fore-

asts be combined, rather than the full set of forecasts,
s there are decreasing returns to adding additional fore-
asts (Armstrong, 2001; Diebold & Shin, 2019; Geweke
Amisano, 2011; Hibon & Evgeniou, 2005; Lichtendahl
Winkler, 2020; Zhou et al., 2002). Simply put, many

could be better than all. In this regard, given a method
ool with many forecasting models available, one can
onsider an additional step ahead of combining: subset
election. Instead of using all available forecasts in a com-
ination, the step aims to eliminate some forecasts from
he combination and select only a subset of the available
orecasts.

The most common technique of subset selection is to
nclude only the most accurate methods in the combi-
ation, discarding the worst-performing individual fore-
asts (e.g., Granger & Jeon, 2004). Mannes et al. (2014)
nvestigated the gains in accuracy from this select-crowd
trategy. Kourentzes et al. (2019) proposed a heuristic
here we exclude component forecasts that show a sharp
rop in performance by using the outlier detection meth-
ds in boxplots. Their empirical results over four diverse
atasets showed that this subset selection approach out-
erforms selecting a single forecast or combining all avail-
ble forecasts. Nonetheless, the approach may suffer from
lack of diversity when formulating appropriate pools.
Early studies considering diversity used forecast en-

ompassing tests for combining forecasts (e.g., Costantini
Pappalardo, 2010; Kışınbay, 2010). The forecast en-

ompassing literature ties in very closely with forecast
ombinations. Several forecast encompassing tests have
een developed to test whether one forecast (or a set of
11
forecasts) encompasses all information contained in an-
other forecast (or another set of forecasts); see, e.g., Chong
and Hendry (1986) and Harvey et al. (1998). A classical ar-
gument suggests that when fixed weights are used (as in
an average), only non-encompassed individual models are
worth combining (Diebold, 1989). However, Hendry and
Clements (2004) provided a counter-example in processes
subject to location shifts where previously encompassed
models may later dominate, while the earlier dominant
model may fail badly.

The diversity of an available forecast pool has
occasionally been explicitly considered for subset selec-
tion. Cang and Yu (2014) proposed an optimal subset
selection algorithm for forecast combinations based on
mutual information, which takes account of diversity
among different forecasts. More recently, Lichtendahl and
Winkler (2020) developed a subset selection approach
comprising two screens: one screen for removing in-
dividual models that perform worse than the Naïve2
benchmark and another for excluding pairs of models
with highly correlated forecast errors. This way, accu-
racy and diversity issues are addressed when forming a
combination.

Subset selection techniques take advantage of allow-
ing many forecasts to be considered when combining,
reducing weight estimation errors and improving compu-
tational efficiency. However, subset selection has received
scant attention in the context of forecast combinations,
and it is mainly focused on trimming based on the prin-
ciples of expertise. Therefore, automatic selection tech-
niques considering expertise and diversity merit further
attention and development.

One approach is to note that subset selection is equiv-
alent to assigning zero weights to some individual fore-
casts, which could be determined either statistically or
judgmentally. Diebold and Shin (2019) focused on weights
that solve a penalized estimation problem. Specifically,
they proposed a two-step LASSO-based procedure that
selects a subset of forecasts to combine in the first step
and shrinks the weights of the selected candidates toward
equality. An alternative idea can be using a pre-set thresh-
old to select individual models with weights greater than
the threshold to join the subsequent combination; see,
e.g., Wang, Kang, Petropoulos and Li (2022), Zhou et al.
(2002). Of course, there is no guarantee that the zero
weight over the training period will also be zero over the
forecast horizon. Hence, time-varying subset selection is
certainly one solution to this problem and can be achieved
by applying a pre-set threshold to forecast combinations
with time-varying weights (Li et al., 2022).

2.6. Forecast combination puzzle

Despite the explosion of various popular and
sophisticated combination methods, empirical evidence
and extensive simulations repeatedly show that the sim-
ple average with equal weights often outperforms more
complicated weighting schemes. This somewhat surpris-
ing result has occupied vast literature, including the early
studies by Stock and Watson (1998, 2003, 2004), the

series of Makridakis competitions (Makridakis et al., 1982;
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Makridakis & Hibon, 2000; Makridakis et al., 2020a), and
also the more recent articles by Blanc and Setzer (2016,
2020), etc. Clemen (1989) surveyed the early combination
studies and raised a variety of issues that remain to be ad-
dressed, one of which is ‘‘What is the explanation for the
robustness of the simple average of forecasts?’’ In a recent
study, Gastinger et al. (2021) investigated the forecasting
performance of a collection of combination methods on
many time series from diverse sources and found that
the winning combination methods differ for the different
data sources. At the same time, the simple average strate-
gies show, on average, more gains in improving accuracy
than other, more complex methods. Stock and Watson
(2004) coined the term ‘‘forecast combination puzzle’’ for
the phenomenon — theoretically sophisticated weighting
schemes should provide more benefits than the simple
average from forecast combination, while empirically, the
simple average has been continuously found to dominate
more complicated approaches to combining forecasts.

Most explanations of why simple averaging might
ominate complex combinations in practice have cen-
ered on the errors that arise when estimating the combi-
ation weights. e.g., Timmermann (2006) noted that the
uccess of simple combinations is due to the increased
arameter estimation error with weighted combinations
simple combination schemes do not require estimat-

ng combination parameters, such as weights based on
orecast errors. Smith and Wallis (2009) demonstrated
hat the simple average is expected to overshadow the
eighted average in a situation where the weights are
heoretically equivalent. The simulations and an empir-
cal study showed the estimation cost of weighted av-
rages when the optimal weights are close to equality,
hus providing an empirical explanation of the puzzle.
ater, Claeskens et al. (2016) provided a theoretical basis
or these empirical results. Taking the estimation of ‘‘op-
imal’’ weights (see Section 2.2) into account, Claeskens
t al. (2016) considered random weights rather than fixed
eights during the optimality derivation. They showed
hat, in this case, the forecast combination might in-
roduce biases in combinations of unbiased component
orecasts, and the variance of the forecast combination
ay be larger than in the fixed-weight case, such as

he simple average. More recently, Chan and Pauwels
2018) proposed a framework to study the theoretical
roperties of forecast combinations. The proposed frame-
ork verified the estimation error explanation of the

‘forecast combination puzzle’’ and, more crucially, pro-
ided additional insights into the puzzle. Specifically, the
ean squared forecast error (MSFE) can be considered
variance estimator of the forecast errors, which may
ot be consistent, leading to biased results with different
eighting schemes based on a simple comparison of
SFE values. Blanc and Setzer (2020) explained why, in
ractice, equal weights are often a good choice using the
radeoff between bias (reflecting the error resulting from
nderfitting training data when choosing equal weights)
nd variance (quantifying the error resulting from the
ncertainty when estimating other weights).
Explaining the puzzle using estimation error requires a

ypothesis that potential gains from the ‘‘optimal’’
12
combination are not too large so that estimation error
overwhelms the gains. Special cases, such as where the
covariance matrix of the forecast errors has equal vari-
ances on the diagonal, and all off-diagonal covariances
are equal to a constant, are illustrated by Timmermann
(2006) and Hsiao and Wan (2014) to arrive at equivalence
between the simple average and the ‘‘optimal’’ combi-
nation. Elliott (2011) characterized the potential bounds
on the size of gains from the ‘‘optimal’’ weights over the
equal weights and illustrated that these gains are often
too small to balance estimation error, providing a supple-
mentary explanation of the puzzle for the explanation of
large estimation error.

Rather than focusing on the impact of combination
weight estimation, Zischke et al. (2022) explored the
implications of sampling variability in forecast combina-
tions. They demonstrated that, asymptotically, the sam-
pling variability in the performance of the combination
forecast is driven entirely by the variability arising from
the estimation of the constituent models, and combina-
tion weight estimation imparts no bias or variability to
the performance of forecast combinations, which lies in
opposition to the finding of Claeskens et al. (2016). These
findings imply that, when the combination weights are
theoretically equivalent, there will be little performance
difference between a sophisticated forecast combination
and an equally weighted combination, providing new
insights into the ‘‘forecast combination puzzle’’.

Examining and explaining the ‘‘forecast combination
puzzle’’ can give decision-makers the following guide-
lines to identify which combination method to choose in
specific forecasting problems.

• Estimation errors are identified as ‘‘finite-sample es-
timation effects’’ in Smith and Wallis (2009), which
suggests that an insufficiently small sample size may
be unable to provide robust weight estimates. Thus,
if one has access to limited historical data, the sim-
ple average or estimated weights with covariances
between forecast errors being neglected are recom-
mended. In addition, alternative simple combination
operators such as trimmed and winsorized means
can be adopted to eliminate extreme forecasts and,
thus, offer more robust estimates than the simple
average.

• Structural changes, which may cause different weight
estimates in the training and evaluation samples,
tend to impact sophisticated combination approaches
more than the simple average. This case makes the
simple average the better choice. The forecast com-
binations using changing weights can also be con-
sidered a means to cope with structural changes, as
suggested in Diebold and Pauly (1987) and Deutsch
et al. (1994).

• If one has access to many component forecasts,
the PCR and the clustering strategy (for details, see
Section 2.2) might be useful to diminish estimation
errors and solve the multicollinearity problem by
reducing the number of parameters needed to be
estimated.
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• Involving time series features (see Section 2.4) and
diverse individual forecasts (see Section 2.5) in the
process of weight estimation can enlarge the gains
of forecast combinations, providing a possible way
to untangle the ‘‘forecast combination
puzzle’’.

In summary, forecasters are encouraged to analyze the
data before identifying the combination strategy and to
choose combination rules tailored to specific forecasting
problems.

3. Probabilistic forecast combinations

3.1. Probabilistic forecasts

In recent years, probabilistic forecasts have received
ncreasing attention. For example, the recent Makridakis
ompetitions, the M4 and the M5 Uncertainty (Makri-
akis et al., 2020b) competitions, encouraged participants
o provide probabilistic forecasts of different types as
ell as point forecasts. Probabilistic forecasts are appeal-

ng for enabling optimal decision-making with a better
nderstanding of uncertainties and the resulting risks.
brief survey of extensive applications of probabilistic

orecasting was offered by Gneiting and Katzfuss (2014).
Probabilistic forecasts can be reported in various forms,

ncluding density forecasts, distribution forecasts, quan-
iles, and prediction intervals, and how to combine them
an vary. For example, although a quantile forecast is the
nverse of the corresponding forecast represented by the
umulative distribution function, the combined quantile
orecast and the combined probability forecast may not
e equivalent. Examples of averaging quantiles and prob-
bilities with equal weights are provided by Lichtendahl
t al. (2013).
Interval forecasts form a crucial special case and are

ften constructed using quantile forecasts where the end-
oints are specific quantiles of a forecast distribution.
or example, the lower and upper endpoints of a central
1 − α) × 100% prediction interval can be defined via the
uantiles at levels α/2 and 1 − α/2.
As with point forecasts, combining multiple proba-

ilistic forecasts allows for diverse information sets and
ifferent types of forecasting models, as well as the miti-
ation of potential misspecifications derived from a single
odel. Empirical studies suggest that the relative perfor-
ance of different models often varies over time due to
tructural instabilities in the unknown data generating
rocess (e.g., Billio et al., 2013). Thus, there has been
growing interest in combining multiple probabilistic

orecasts to produce combined forecasts that integrate
nformation from separate sources.

.2. Scoring rules

Decision makers mainly focus on accuracy when
ombining point forecasts, while other measures such as
alibration and sharpness need to be considered when
orking with combinations of probabilistic forecasts (Gnei
ng et al., 2007; Gneiting & Raftery, 2007; Lahiri et al., l
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2015). Calibration concerns the statistical consistency
between the probabilistic forecasts and the corresponding
realizations, thus serving as a joint property of fore-
casts and observations. In practice, a probability integral
transform (PIT) histogram is commonly employed in-
formally as a diagnostic tool to assess the calibration
of probability forecasts regardless of whether they are
continuous (Dawid, 1984; Diebold et al., 1998) or dis-
crete (Gneiting & Ranjan, 2013). A uniform histogram
indicates a probabilistically calibrated forecast. Sharp-
ness refers to the concentration of probabilistic forecasts
and thus serves as a property of the forecasts only; the
sharper a forecast is, the better it is. Sharpness is easily
comprehended when considering prediction intervals: the
sharper the forecasts, the narrower the intervals. In the
case of probability forecasts, sharpness can be assessed
in terms of the width of central prediction intervals. For
more thorough definitions and diagnostic tools of cali-
bration and sharpness, we refer to Gneiting and Katzfuss
(2014).

According to Gneiting et al. (2007), the intent of prob-
abilistic forecasting is to maximize the sharpness of the
forecast distributions subject to calibration based on the
available information set. In this light, scoring rules that
reward calibration and sharpness are appealing in pro-
viding summary measures for the quality of probabilistic
forecasts, with a higher score indicating a better forecast.
For a probabilistic forecast F , a scoring rule is proper
if it satisfies the condition that the expected score for
an observation drawn from distribution G is maximized
when F = G. It is strictly proper if the maximum is
nique. Gneiting and Raftery (2007) provides an excellent
eview and discussion on a diverse collection of proper
coring rules for probabilistic forecasts.
The schemes for combining multiple probabilistic fore-

asts have evolved from a simple distribution mixture
o more sophisticated combinations accounting for cor-
elations between distributions. The type of strategy one
ight choose to use depends largely on the computational
urden and the overall performance of the combined
orecasts regarding accuracy, calibration, and sharpness.

.3. Linear pooling

Probability forecasts strive to predict the probability
istribution of quantities or events of interest. In line with
he notations in previous sections, here we consider N
ndividual forecasts specified as cumulative probability
istributions of a random variable Y at time T+h, denoted
i(yT+h|IT ), i = 1, . . . ,N , using the information available
p to time T , IT . One popular approach is to directly take
mixture distribution of these N individual probability

orecasts with estimated weights, neglecting correlations
etween these individual components. This approach is
ommonly referred to as the ‘‘linear opinion pool’’ in
he literature on combining experts’ subjective probability
istributions, dating back at least to Stone (1961). The

inear pool of probability forecasts is defined as the finite
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F̃ (yT+h|IT ) =

N∑
i=1

wT+h|T ,iFi(yT+h|IT ), (12)

where wT+h|T ,i is the weight assigned to the ith probability
forecast. These weights are often set to be non-negative
and sum to one to guarantee that the pooled forecast pre-
serves properties of both non-negativity and integrating
to one. The pooled probability forecast satisfies numerous
properties such as the unanimity property (if all individual
forecasters agree on a probability, then the pooled fore-
cast agrees also); see Clemen andWinkler (1999) for more
details.

Linear pooling of probability forecasts allows us to
accommodate skewness and kurtosis (fat tails), and also
multi-modality, even under normal distributions of indi-
vidual forecasts; see Wallis (2005) and Hall and Mitchell
(2007) for further discussion on this point.

Define µi and σ 2
i as the mean and variance of the ith

component forecast distribution and drop the time and
horizon subscripts for simplicity. Then the linear com-
bined probability forecast has the mean and variance,

µ̃ =

N∑
i=1

wiµi, (13)

and σ̃ 2
=

N∑
i=1

wiσ
2
i +

N∑
i=1

wi (µi − µ̃)
2
. (14)

Note that the mean of the combined distribution is equiv-
alent to the linear combination of the individual means.
Thus, the associated combination point forecast is consis-
tent with the linear combination point forecast.

However, the variance of the combined distribution is
larger than the linear combination of the individual vari-
ances when the individual means differ. Consequently,
seeking diverse forecasts may harm the probabilistic fore-
cast while helping the point forecast; see Ranjan and
Gneiting (2010) for a theoretical illustration and simula-
tion study. Simply put, as the diversity among individual
probability forecasts increases, the mixed forecast will
lose sharpness and may become under-confident because
of the spread driven by the disagreement between the
individual probability forecasts (Hora, 2004; Ranjan &
Gneiting, 2010; Wallis, 2005).

Even in the ideal case where individual forecasts are
well calibrated, the resulting linear pooling combination
may be poorly calibrated. Theoretical aspects of this find-
ing and properties of linear pools of probability forecasts
have been further studied in Hora (2004), Ranjan and
Gneiting (2010), and Lichtendahl et al. (2013).

On the other hand, Hora (2004) demonstrated, both
from theoretical and empirical aspects, that linear pooling
may provide better-calibrated forecasts than the individ-
ual distributions when individual forecasts tend to be
overconfident. This finding helps to account for the suc-
cess of linear pooling in varied applications. Jose et al.
(2014) highlighted that if the experts are overconfident
but have low diversity, the linear pool may remain over-

confident. Lichtendahl et al. (2013) identified three factors
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that manipulate the calibration of the probability forecast
derived from linear pooling: (i) the number of constituent
forecasts, (ii) the degree to which the constituent fore-
casts are overconfident, and (iii) the degree of the con-
stituents’ disagreement on the location (e.g., mean) of the
distribution.

In principle, probability forecasts can be recalibrated
before or after the pooling to correct for miscalibra-
tion (Turner et al., 2014). However, it is challenging to
appraise the degree of miscalibration (which may vary
considerably among different forecasts and over time)
and, therefore, to recalibrate accordingly. Some effort has
been directed toward developing alternative combina-
tion methods to address the calibration issue. For exam-
ple, Jose et al. (2014) suggested the ‘‘trimmed opinion
pool’’, which trims away some individual forecasts from
the ‘‘linear opinion pool’’ before mixing the component
forecasts. Specifically, exterior trimming that trims away
forecasts with low or high means values serves as a way
to address under-confidence by decreasing the variance.
Conversely, interior trimming that trims away forecasts
with moderate means is suggested to mitigate overconfi-
dence by increasing the variance. At a more foundational
level, the improvement in forecasting performance of-
fered by trimming was confirmed by Grushka-Cockayne,
Jose and Lichtendahl (2017).

Some researchers prefer nonlinear alternatives, includ-
ing a generalized linear pool, the spread-adjusted linear
pool, and the beta-transformed linear pool, to deliver
better calibrated combined probability forecasts; these
are discussed in Section 3.5. Instead of mixing probability
forecasts mentioned above, Lichtendahl et al. (2013) rec-
ommended averaging quantile forecasts (see Section 3.9)
based on the supportive results both theoretically and
empirically.

The key practical issue determining the success (or
failure) of linear pooling is how the weights for the in-
dividual probability forecasts in the finite mixture should
be estimated. As with point forecast combinations, equal
weights are worthy of consideration, while determining
optimal weights is particularly challenging in the case of
having access to probability forecasts with limited histor-
ical data.

Linear pooling with equal weights is easy to under-
stand and implement, commonly yielding robust and sta-
ble outcomes. For reviews, see, e.g., Wallis (2005) and
O’Hagan et al. (2006). A leading example is the US survey
of professional forecasters (SPF), which publishes mixed
probability forecasts (in the form of histograms) for in-
flation and GDP growth using equal weights. As the ex-
perience of combining point forecasts has taught us, the
equally weighted approach often turns out to be hard to
beat. An important reason is that it avoids parameter esti-
mation error that usually exists in weighted approaches;
see Section 2.6 for more details and illustrations.

Motivated by the ‘‘optimal’’ weights obtained in point
forecast combinations by minimizing the MSE loss (see
Section 2.2), Hall and Mitchell (2007) proposed obtaining
the set of weights by minimizing the Kullback–Leibler in-
formation criterion (KLIC) distance between the combined
probability forecast density f̃ (y |I ) and the true (but
τ+h τ
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unknown) probability density f (yτ+h), τ = 1, . . . , T . The
LIC distance is defined as

LIC =

∫
f (yτ+h) log

{
f (yτ+h)

f̃ (yτ+h|Iτ )

}
dyτ+h

= E
[
log f (yτ+h) − log f̃ (yτ+h|Iτ )

]
.

Under the asymptotic assumption that the number of
bservations T grows to infinity, the problem of mini-
izing the KLIC distance reduces to the maximization of

he average logarithmic score of the combined probability
orecast. Therefore, the optimal weight vector wT+h|T is
given by

wT+h|T = argmax
w

1
T − h

T−h∑
t=1

log f̃ (yt+h|It ), (15)

where wT+h|T =
(
wT+h|T ,1, . . . , wT+h|T ,N

)′. Using the log-
arithmic scoring rule eliminates the need to estimate the
unknown true probability distribution and simplifies the
weight estimation for the component forecasts. This was
followed by Pauwels and Vasnev (2016) documenting the
properties of the optimal weights in Eq. (15), centering
on the asymptotic assumption used by Hall and Mitchell
(2007). Their simulations and empirical results indicated
that the combination with optimal weights is inferior for
small T , while it is valid in minimizing the KLIC distance
when T is sufficiently large. Therefore, a sufficient training
sample is recommended when solving the optimization
problem.

Following in the footsteps of Hall and Mitchell (2007),
many extensions and refinements of the combination
strategy have been suggested. Conflitti et al. (2015) de-
vised a simple iterative algorithm to compute the optimal
weights in Eq. (15). The algorithm scales well with the
dimension N and enables the combination of many indi-
vidual probability forecasts. Geweke and Amisano (2011)
provided a Bayesian perspective on an optimal linear pool
and a theoretical justification for using optimal weights. Li
et al. (2022) conducted time-varying weights based on
time-varying features from historical information, where
the weights in the forecast combination were estimated
via Bayesian logarithmic predictive scores. Jore et al. (2010
put forward an exponential weighting scheme based on
the recursive weights constructed using the relative past
performance of each probability forecast in terms of the
logarithmic score. In contrast to the optimal opinion pool
based on the weights in Eq. (15), in this case, the log-
arithmic score of the combined probability forecast is
not necessarily maximized. The logarithmic scoring rule
is appealing as it intuitively assigns a higher weight to
a component forecast that better fits the realized value.
On the other hand, forecast combinations with weights
optimized by minimizing the continuously ranked prob-
ability score (CRPS, Gneiting & Raftery, 2007), which is a
strictly proper scoring rule for distribution forecasts, have
been considered in some research, see, e.g., Raftery et al.
(2005), Thorey et al. (2017), and Thorey et al. (2018).

Furthermore, some special treatments were given to
accommodate probability forecast combinations in appli-

cations such as energy forecasting, retail forecasting, and
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economic forecasting. For instance, Opschoor et al. (2017)
extended the idea of optimal combinations but estimated
optimal weights by either maximizing the censored like-
lihood scoring rule (Diks et al., 2011) or minimizing a
weighted version of the CRPS, allowing forecasters to limit
themselves to a specific region of the target distribu-
tion. For example, we are more likely to be interested
in avoiding out-of-stocks when working with retail fore-
casting. The tail of the distribution is also the main fea-
ture of interest when measuring downside risk in equity
markets. Additionally, Zischke et al. (2022) showed that
when forecasting during times of high volatility, forecast
combinations produced by optimizing according to the
censored likelihood scoring rule always lead to a bet-
ter out-of-sample performance than ‘‘optimal’’ forecast
combinations with weights optimized using the logarith-
mic score. This supports using a scoring rule that pri-
oritizes accurate forecasts in a specific region. Diebold
et al. (2022) instead constructed regularized mixtures of
density forecasts using a variety of objectives and regu-
larization penalties. The optimal regularization tends to
spread probability mass from the center into both tails
of the distribution, correcting for overconfidence and ad-
justing kurtosis. Besides, Pauwels et al. (2020) proposed
an approach to computing the optimal weights by maxi-
mizing the average logarithmic score subject to additional
higher moments restrictions. Through constrained opti-
mization, the combined probability forecast can preserve
specific characteristics of the distribution, such as fat tails
or asymmetry. Martin et al. (2021) looked at model mis-
specification and showed via simulation and empirical
results that score-specific optimization of linear pool-
ing weights does not consistently improve forecasting
accuracy.

3.4. Bayesian model averaging

Bayesian model averaging (BMA) provides an alterna-
tive means of mixing individual probability forecasts with
respect to their posterior model probabilities. BMA offers
a conceptually elegant and logically coherent solution
to the issue of accounting for model uncertainty (see,
e.g., Draper, 1995; Garratt et al., 2003; Leamer, 1978;
Raftery et al., 1997). Under this approach, the posterior
probability forecast is computed by mixing a set of in-
dividual probability forecasts distributions, Fi(yT+h|IT ) =

F (yT+h|IT ,Mi), from model Mi, and can be given as

F̃ (yT+h|IT ) =

N∑
i=1

P(Mi|IT )F (yT+h|IT ,Mi), (16)

where P(Mi|IT ) is the posterior probability of model Mi.
The decision-makers update the prior probability of model
Mi being the true model, P(Mi), via Bayes’ Theorem to
compute the posterior probability

P(Mi|IT ) =
P(Mi)P(IT |Mi)∑N
i=1 P(Mi)P(IT |Mi)

, (17)

where

P(IT |Mi) =

∫
P (θi|Mi) P (IT |Mi, θi) dθi (18)
θi
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is the marginal likelihood of model Mi, P (θi|Mi) is the
prior on the unknown parameters θi conditional on model
Mi, and P (IT |Mi, θi) is the likelihood function of model Mi.
ee, e.g., Koop (2003) for textbook illustrations of BMA.
BMA in Eq. (16) can be viewed as a form of linear pool-

ng of individual probability forecasts (12), weighted by
heir posterior model probabilities given in Eq. (17). Note
hat the weights characterized by posterior probabilities
o not account for correlations among individual prob-
bility forecasts. The approach provides a general way
o deal with model uncertainty and does not necessarily
equire using conjugate families of distributions. The BMA
rocedure is consistent in the sense that the posterior
robability in Eq. (17) indicates the probability that model
i is the best under the KLIC measure distance and shows
ow well the model fits the observations (Fernández-
illaverde & Rubio-Ramırez, 2004; Raftery et al., 2005;
right, 2008).
While theoretically attractive, BMA suffers three major

hallenges when implemented in practice. One is how
o correctly specify the model space of interest to avoid
odel incompleteness. It is often impractical to cover the
omplete set of models when the number of possible
odels is large, or their structures are complex. This
ifficulty can mostly be resolved via selecting a subset
f models supported by the data or through stochastic
earch algorithms over the model space; see Hoeting et al.
1999) and Koop and Potter (2003) for more details on
odel search strategies. A second well-known challenge

elates to eliciting two types of priors (on parameters
nd models) for many models of interest (Aastveit et al.,
019; Moral-Benito, 2015). Another practical concern lies
n the computation of the integrals in Eq. (18). The inte-
rals required for deriving the marginal likelihood may
e analytically intractable in many cases, except for the
eneralized linear regression models with conjugate pri-
rs. The Laplace method, as well as the Markov chain
onte Carlo (MCMC) methods, are therefore frequently
sed to provide an excellent approximation to P(IT |Mi);
ee, e.g., Hoeting et al. (1999) and Bassetti et al. (2020)
or discussions of these approximations.

One drawback of the BMA approach is the implicit
ssumption that the true model is included in the model
pace to be considered (Wright, 2008). Under this as-
umption, when the sample size tends to infinity, the
osterior probabilities converge to zero, except for one,
hich converges to unity. Thus, BMA reduces to model se-

ection for a large sample size, with the best model (which
s the true model if that exists, but is still well-defined if
one of the models are true) receiving a weight very close
o one; see Geweke and Amisano (2010) for an empiri-
al demonstration. In this regard, the combined forecast
erived from BMA may be misspecified when the model
pace is incomplete (i.e., all models under consideration
re incorrect), raising the issue of model incompleteness.
ecently, Yao et al. (2018) took the idea of stacking
rom the literature on point forecast combinations (see
ection 2.4) and generalized it to the combinations of
orecast distributions in the Bayesian setting, which can
ssentially be regarded as a minor tweak on BMA. How-
ver, as the critique given at the end of Yao et al. (2018)
16
says, averaging distribution functions may be inferior to
averaging quantiles (see Section 3.9). This is especially
true when the combined problem is more like an in-
formation aggregation problem than a BMA problem. In
this case, BMA (or minor tweaks) does not seem like the
proper framework since we are almost always in a world
without a true model.

In contrast, as defined in Eq. (15), optimal weights
do not suffer from the issue of model incompleteness
because the weights need not converge to zero or unity
regardless of whether the component models are correct
or not. This allows for a convex combination (rather than
a selection) of the individual probability forecast distri-
butions. In a binary-event context, Lichtendahl Jr et al.
(2022) introduced a new class of Bayesian combinations
in which stacking is used to form the approach by ag-
gregating the probabilities provided by the experts or
models. But it should not be confused with BMA and the
approach developed by Yao et al. (2018) since it does not
have to assume, as BMA does, that one of the models be-
ing combined is the true model. Its setting is information
aggregation rather than model selection. Lichtendahl Jr
et al. (2022) showed that extremizing (i.e. shifting the
average probability closer to its nearest extreme, see,
e.g., Satopää et al., 2016) is not always appropriate when
combining binary-event forecasts.

The other drawback of the BMA approach may be
related to the fixed probabilities assigned to component
models, as documented in Aastveit et al. (2019). The un-
certainty of the weights is ignored in this case, leading
to unstable combined forecasts in a forecasting environ-
ment characterized by significant instability and struc-
tural changes in the forecast performance of the indi-
vidual models. Thus, it is plausible to let the pooling
weights evolve. Raftery et al. (2010) developed a model
combination strategy for doing dynamic model averaging
(DMA), allowing the forecasting model and the coeffi-
cients in each model to evolve over time. By considering
multiple models, the goal of DMA is to calculate the
probabilities that the process is governed by model Mi
for i = 1, . . . ,N at time T + 1, given the informa-
tion available up to time T , and average forecasts across
individual models using these probabilities. When the
forecasting model and model parameters do not change,
DMA reduces to a recursive implementation of standard
BMA. The strategy advocated by Raftery et al. (2010) can
also be used for dynamic model selection (DMS), where
a single model with the highest probability is selected
and used to forecast. Note that these calculated prob-
abilities will vary over time; thus, different forecasting
models hold at each point in time. Such specifications
are of particular interest in economics, see, e.g., Koop and
Korobilis (2012) and Del Negro et al. (2016) for notable
macroeconomic applications. One contribution of Raftery
et al. (2010) is that a forgetting factor is used to develop a
computationally efficient recursive algorithm that allows
for fast calculation of the required probabilities when
model uncertainty and the number of models considered
are large.
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3.5. Nonlinear pooling

Despite their simplicity and popularity, the classical
inear pooling methods have several shortcomings, such
s the calibration problem discussed previously. A linear
ooling of probability forecasts increases the variance of
he forecasts and may result in a suboptimal solution,
acking both calibration and sharpness. Several nonlin-
ar alternatives to linear pooling methods have been de-
eloped to address these shortcomings for recalibration
urposes.
Motivated by the seminal work of Dawid et al. (1995),

neiting and Ranjan (2013) developed the generalized
inear pool (GLP) to incorporate a parametric family of
ombination formulas. Let Fi(yT+h|IT ) denote the CDF (cu-
ulative distribution function) of the probability forecast

i = 1, . . . ,N), and F̃ (yT+h|IT ) denote the CDF of the
ombined forecast. The generalized pooling scheme takes
he following form

˜ (yT+h|IT ) = g−1
( N∑

i=1

wT+h|T ,ig
(
Fi(yT+h|IT )

))
,

here wT+h|T ,1, . . . , wT+h|T ,N are nonnegative weights that
um to one, and g denotes a continuous and strictly
onotonic function with the inverse g−1. The linear,
armonic and logarithmic (geometric) pools become spe-
ial cases of the GLP for g(x) = x, g(x) = 1/x, and
g(x) = log(x), respectively. Gneiting and Ranjan (2013)
highlighted that the generalized pooling strategy might
fail to be sufficiently flexibly dispersive for calibration.

As a result, they also proposed the spread-adjusted
linear pool (SLP) to allow one to address the calibra-
tion problem. Define F 0

i and corresponding density f 0i via
Fi(yT+h|IT ) = F 0

i (yT+h − ηi|IT ) and fi(yT+h|IT ) = f 0i (yT+h −

ηi|IT ), where ηi is the unique median of Fi(yT+h|IT ). Then
the SLP has the combined CDF and the corresponding
density,

F̃ (yT+h|IT ) =

N∑
i=1

wT+h|T ,iF 0
i

(
yT+h − ηi

c

⏐⏐⏐⏐IT) and

f̃ (yT+h|IT ) =
1
c

N∑
i=1

wT+h|T ,if 0i

(
yT+h − ηi

c

⏐⏐⏐⏐IT) ,

respectively, where wT+h|T ,1, . . . , wT+h|T ,N are nonnega-
tive weights with

∑N
i=1 wT+h|T ,i = 1, and c is a strictly

positive spread adjustment parameter. The traditional lin-
ear pool is a special case for c = 1. A value of c <

1 is suggested for neutrally confident or underconfident
component forecasts, while a value of c ≥ 1 is sug-
gested for overconfident components. Moreover, one can
introduce spread adjustment parameters varying with the
components in case the degrees of miscalibration of the
components differ substantially.

The cumulative beta distribution is widely employed
for recalibration because of the flexibility of its shape (see,
e.g., Graham, 1996). Ranjan and Gneiting (2010) intro-
duced a beta-transformed linear pool (BLP) that merges
the traditional linear pool with a beta transform to achieve
17
calibration. The BLP takes the form

F̃ (yT+h|IT ) = Bα,β

( N∑
i=1

wT+h|T ,iFi(yT+h|IT )
)

,

where wT+h|T ,1, . . . , wT+h|T ,N are nonnegative weights that
sum to one, and Bα,β is the CDF of the beta distribution
ith the shape parameters α > 0 and β > 0. Full general-

ity of the BLP enables an asymmetric beta-transformation
based on the linear pooling of probability forecasts. In
its most simplistic case, the BLP approach nests the tra-
ditional linear pool under the restriction α = β = 1.
The beta-transformation tunes up a linear pooled prob-
ability forecast if it is larger than 0.5 and tunes it down
otherwise when imposing the constraint α = β ≥ 1.
The approach can combine probability forecasts from both
calibrated and uncalibrated sources. The estimates of the
beta-transformation, along with the mixture weights for
linear pooling, can be obtained by maximum likelihood,
as suggested by Ranjan and Gneiting (2010). Recent work
by Lahiri et al. (2015) demonstrated the superiority of
the BLP approach, based on identifying the most valuable
individual forecasts by a Welch-type test, over the equally
weighted approach for calibration and sharpness.

To achieve improved calibration properties, Bassetti
et al. (2018) proposed a Bayesian nonparametric approach
based on Gibbs and slice sampling to realize the calibra-
tion and combination of probability forecasts by introduc-
ing an additional beta mixture in the BLP method. The
resulting predictive CDF is

F̃ (yT+h|IT ) =

K∑
k=1

ωkBαk,βk

( N∑
i=1

wT+h|T ,kiFi(yT+h|IT )
)

,

where ω1, . . . , ωK denote beta mixture weights. The pro-
posed approach enables one to treat the parameter K
as bounded or unbounded, and it reduces to the BLP
for K = 1. The Bayesian inference approach achieved a
compromise between parsimony and flexibility and pro-
duced well-calibrated and accurate forecasts in their sim-
ulations and the empirical examples, outperforming the
linear pool substantially.

The essence of these nonlinear pooling methods is
to perform various transformations, which may be non-
linear, to either the component forecasts or the linearly
pooled forecasts to restore calibration and sharpness.
Kapetanios et al. (2015) generalized the literature by in-
corporating the dependence of the mixture weights on the
variable one is trying to forecast, allowing the weights to
introduce the nonlinearities and thus leading to outcome-
dependent density pooling. The forecast performance of
nonlinear pooling approaches largely depends on diverse
factors, including the features of the target data, mixture
component models, and training periods, and thereby
deserves further research. This is in agreement with Baran
and Lerch (2018), who investigated the performance of
state-of-the-art forecast combination methods through
case studies and found no substantial differences in fore-
cast performance between the simple linear pool and the
theoretically superior but cumbersome nonlinear pooling

approaches.
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3.6. Meteorological ensembles

The term ‘‘combination’’ and ‘‘ensemble’’ are often
sed interchangeably in the literature on forecast com-
inations. However, ‘‘ensemble’’ was initially developed
n the meteorological literature from combinations of
robabilistic forecasts that we have discussed.
Instead of combining multiple probabilistic forecasts

vailable for forecasters, as with the approaches reviewed
n preceding sections, an ensemble weather forecast is
onstructed from a set of point forecasts of the same
eather quantity of interest, based on perturbed initial at-
ospheric states (e.g., Gneiting & Raftery, 2005; Maqsood
t al., 2004) and/or different model formulations (e.g.,
uizza et al., 2005, 1999). In this light, two major sources
f forecast uncertainty, initial condition uncertainty re-
ulting from the chaotic nature of the atmosphere, and
odel uncertainty arising from imperfect numerical mod-
ls, are addressed (Baran, 2014; Lorenz, 1963; Weigel
t al., 2008). This enables a measure of uncertainty to be
ttached to an ensemble weather forecast, making it more
aluable than a single ‘‘deterministic’’ forecast, providing
n inherently probabilistic assessment.
A meteorological ensemble forecast is a probabilistic

orecast in the sense described here, assuming that there
s no inherent uncertainty other than that contained in the
nitial conditions and the model formulation. In contrast,
ost statistical forecasting methods include an important
dditional source of uncertainty due to random noise
nnovations but do not usually include uncertainty due
o initial conditions. The distinction is important enough,
nd the literature sufficiently distinct, that we have cho-
en to discuss meteorological ensemble forecasts in this
eparate section.
It has been demonstrated that the raw meteorological

nsemble forecasts typically present systematic
rrors regarding bias (Atger, 2003; Mass, 2003) and dis-
ersion (Buizza et al., 2005; Sloughter et al., 2010), with
tendency for the truth frequently falling outside of the
ange of the ensemble. Various statistical postprocessing
ethods have been introduced to improve the forecast
uality and correct these errors by estimating repre-
entable relationships between the response variable of
nterest and predictors. Most postprocessing methods can
e categorized into two groups: parametric approaches
ith distribution-based assumptions, such as ensemble
odel output statistics (EMOS, Gneiting et al., 2005) mod-
ls and BMA (Raftery et al., 2005), and nonparametric
pproaches with distribution-free assumptions, such as
nalog-based methods (e.g., Delle Monache et al., 2013)
nd quantile regression forests (Taillardat et al., 2019).
ee Vannitsem et al. (2021) for a recent review of sta-
istical postprocessing methods and their potential and
hallenges.
Recently, the community of weather forecasting is

tarting to explore the potentials of machine learning
echniques, especially in the context of ensemble forecast-
ng, in the sense of including arbitrary predictors and ac-
ounting for nonlinear dynamics of the Earth system that
re not captured by existing numerical models (Dueben

t al., 2021). One use of machine learning techniques is to d

18
complement ensemble NWP (numerical weather predic-
tion, see, e.g., Bauer et al., 2015; Benjamin et al., 2018, for
a summary of its revolution) forecasts using an additive
postprocessing step for correction of ensemble bias and
spread (Grönquist et al., 2021; Rasp & Lerch, 2018; Scher
& Messori, 2018). Machine learning techniques, such as
neural networks, have also been used as data-driven
forecast tools, an alternative to NWP models based on
the physical laws governing the atmosphere, to generate
base forecasts. These techniques improve computational
efficiency in creating ensemble forecasts with much larger
ensemble sizes (Dueben & Bauer, 2018; Rasp & Thuerey,
2021; Scher, 2018; Scher & Messori, 2021).

3.7. Combinations constructed via Bayes’ theorem

Pooling approaches, elaborated in Sections 3.3–3.5,
pool/mix multiple probability forecasts with equal
weights, weights evaluated using various scoring rules,
or posterior probabilities sequentially updated via Bayes’
Theorem. They inherently neglect correlations among the
component probability forecasts. Nevertheless, forecasts
derived from different sources are likely to share the
same data, overlapping information, similar forecasting
models, and common training processes. Thus, some sort
of dependence among individual probability forecasts is
extremely likely, and such dependence can severely im-
pact the aggregated distributions. This section reviews
an alternative class of combination techniques in which
dependence among component probability forecasts can
be incorporated. The major issue that makes this class of
combinations difficult lies in how to model the depen-
dence among individual distributions to achieve a good
performance.

The extensive literature on probability forecast com-
binations considering correlations among individual dis-
tributions has primarily been driven from a foundational
Bayesian perspective. The literature has originated in agent
opinion analysis theory, free from the time series context,
dating back to at least the pioneering work of Win-
kler (1968). We remark that in pooling techniques, the
contribution of each probability forecast to the final ag-
gregated probability forecast is measured explicitly via
weights. In contrast, it is not specified by a specific form
in the Bayesian combination techniques discussed in this
section.

Early work in the Bayesian vein focused on a Bayesian
paradigm developed by Morris (1974, 1977) in which a
decision-maker views available probability forecasts from
various sources simply as data and updates their prior
distribution using Bayes’ Theorem. At time T , the decision-
maker aims to forecast yT+h and receives current h-step-
ahead probability forecasts HT+h = {f1(yT+h|IT ), . . . ,
fN (yT+h|IT )} from the set of models. The posterior prob-
bility forecast of yT+h is then

˜ (yT+h|IT ,HT+h) ∝ p (yT+h|IT ) fN (HT+h|yT+h, IT ) , (19)

here p (yT+h|IT ) denotes the decision-maker’s prior prob-
bility for yT+h given the available information IT , and
N (HT+h|yT+h, IT ) denotes the joint likelihood function

erived from the individual distributions.
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The problem of eliciting the posterior probability fore-
ast in Eq. (19) is therefore broken down into the prob-
em of specifying the prior distribution and assessing the
orm of the joint distribution, or likelihood, derived from
he component probability forecasts. A flat (possibly im-
roper) prior is often considered in the literature be-
ause: (i) it is reasonable to assume that everything the
ecision-maker knows is integrated into the individual
istributions; and (ii) if not, the extra knowledge from
he decision-maker can be incorporated in the likelihood
s an additional individual distribution; see, e.g., Winkler
1968), Clemen and Winkler (1993), Clemen and Winkler
1985), and Jouini and Clemen (1996). Thus, the applica-
ion of Bayes’ Theorem presents the most taxing difficul-
ies in delicately specifying the likelihood function, which
equires consideration of the bias and precision of the
ndividual distributions as well as their dependence (Hall
Mitchell, 2007).
One line of research has considered specifying the

ikelihood as a joint distribution of forecast errors and
upported using the correlation between individuals’ fore-
ast errors to represent the dependence among individ-
al distributions. Emphasis has been placed on making
he likelihood computation tractable by adopting certain
istributional assumptions. For example, Winkler (1981)
ssessed the likelihood as a multivariate normal distri-
ution. Restricting the focus to individual models with
nbiased forecasts, he derived tractable expressions for
he posterior probability forecast, a normal distribution
ith mean µ̃ = 1′Σ−1µ/1′Σ−11 and variance σ̃ 2

=

1/1′Σ−11, where 1 is an N-dimensional unit vector, µ is
an N-dimensional vector of individuals’ mean, and Σ is
a known covariance matrix of forecast errors. The mean
of the posterior probability forecast is essentially a lin-
ear combination of the individuals’ means with weights
1′Σ−1/1′Σ1 identical to the ‘‘optimal’’ weights proposed
by Bates and Granger (1969) and the weights derived
from the constrained regression proposed by Granger and
Ramanathan (1984) (see Section 2.2). The latter two ap-
proaches do not require normality. The estimation of Σ ,
therefore, becomes crucial when Σ is unknown. Win-
kler (1981) suggested estimating Σ from data and using
an inverted Wishart distribution as a prior for Σ . The
procedure is computationally intensive when the number
of individual distributions to combine increases; see Hall
and Mitchell (2007) for more discussion of the covariance
matrix estimation. Following Winkler (1981), Palm and
Zellner (1992) extended the approach to allow for biased
individual forecasts, providing a complete solution to the
forecast combination problem that takes into account the
joint distribution of forecast errors from the individual
models.

Jouini and Clemen (1996) took a different perspec-
tive and looked at the likelihood function derived from
a copula-based joint distribution, in which dependence
among individual distributions is encoded into the copula.
The procedure is appealing in the sense of being able to
deal with individual forecasts with arbitrary distributions.
A recent study by Wilson (2017) gave an expert judgment
study to assess the practical significance of the individ-
ual’s dependency by comparing the Bayesian combination
19
methods, developed by Winkler (1981) and Jouini and
Clemen (1996) and common pooling methods.

3.8. Combinations constructed via integration

A fully specified Bayesian model is difficult to concep-
tualize, especially when biases and miscalibration of indi-
vidual distributions (and, critically, dependencies among
them) are time-varying. In this light, the probability fore-
cast combination method of McAlinn and West (2019)
may be helpful. They adapted and extended the basic
Bayesian predictive synthesis (BPS) framework developed
in agent opinion analysis (see, e.g., Genest & Schervish,
1985; West, 1992; West & Crosse, 1992) to sequential
forecasting in time series. In the dynamic extension of
the BPS model, the posterior probability forecast takes the
form

f̃ (yT+h|IT ,H1:T+h)

=

∫
xT+h

α (yT+h|xT+h)
∏
i=1:N

fi
(
xT+h,i|IT

)
dxT+h,

where, to use our earlier notation, H1:T+h denotes the
full set of individual probability forecasts available for the
decision-maker up to forecast origin T , xT+h = xT+h,1:N is
an N-dimensional vector of latent variables at time T + h,
and α (yT+h|xT+h) is a conditional distribution for yT+h
given xT+h defining the synthesis function.

Instead of constructing Bayesian combinations by mul-
tiplying a likelihood by a prior, the dynamic BPS method
follows a subclass of Bayesian updating rules, i.e., updat-
ing by integration, in the form of latent factor models. In-
formation about biases, miscalibration, and dependencies
among the individual distributions can then be incorpo-
rated directly through the specification of the synthesis
function. Specifically, McAlinn and West (2019) devel-
oped a time-varying (non-convex/nonlinear) combination
of probability forecasts by defining a normally distributed
synthesis function

α (yT+h|xT+h) = N
(
yT+h|A′

T+hθT+h, vT+h
)

with AT+h =
(
1, x′

T+h

)′ and θT+h =
(
θT+h,0, θT+h,1, . . . ,

θT+h,N
)′. A dynamic linear model is built to model the

time evolution of these parameter processes, which is
defined as

yT+h = A′

T+hθT+h + νT+h, νT+h ∼ N (0, vT+h) ,

θT+h = θT+h−1 + ωT+h, ωT+h ∼ N (0, vT+hW T+h) ,

where θT+h evolves in time according to a normal ran-
dom walk with innovations variance matrix vT+hW T+h,
and vT+h, identifies the residual variance in forecast-
ing yT+h given past information and the set of agent
forecast distributions. It is suggested that BPS models
be customized specifically to the forecast horizon, as a
forecasting model may provide different forecast perfor-
mances at different forecast horizons. MCMC methods
are required for this posterior inference, and dependen-
cies among agents are involved in sequentially updated
estimates of the BPS parameters. Their results of fore-

casting a quarterly series of inflation rates showed that
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the proposed dynamic BPS model significantly outper-
forms benchmark methods, such as the pooling and BMA
combination techniques described in Sections 3.3 and
3.4. This also held true in a multivariate extension stud-
ied by McAlinn et al. (2020). McAlinn and West (2019)
also showed that the dynamic BPS framework encom-
passes many existing combination methods, including
linear pooling and BMA methods, by specifying different
forms of the BPS synthesis function.

3.9. Quantile forecast combinations

Probabilistic forecasts can also be elicited in the form
f quantiles, which are the inverse of the corresponding
robability forecasts characterized by the CDFs. Quantile
ombinations involve averaging the individuals’ quantile
unctions rather than their inverses as in linear pooling
see Section 3.3). In other words, quantile combinations
ntail horizontally averaging the individuals’ CDFs while
inear pooling entails vertically averaging (Lichtendahl
t al., 2013).
The standard combination strategy for quantiles is to

llocate identical weights over all quantile levels for each
odel. For i = 1, . . . ,N , let Fi(yT+h|IT ) denote the individ-
al CDF with corresponding probability density function
iven by fi(yT+h|IT ) and let QT+h|T ,i(τ ) = F−1

T+h|T ,i(τ ) denote
he corresponding quantile function. Quantile averaging is
hen given by

˜T+h|T (τ ) =

N∑
i=1

wT+h|T ,iQT+h|T ,i(τ ), 0 < τ ≤ 1, (20)

here the weight wT+h|T ,i ≥ 0 such that
∑N

i=1 wT+h|T ,i =

1. This combination strategy is also referred to as Vincen-
tization (Vincent, 1912).

Interestingly, unlike linear pooling in Eq. (12), if in-
dividual distributions belong to the same location-scale
family (such as normal, Logistic, Cauchy, etc.), then quan-
tile averaging yields a combined distribution from the
same family, with parameters given by weighted averages
of the individuals’ parameters (Ratcliff, 1979; Thomas &
Ross, 1980). Consequently, quantile averaging of normal
distributions is always uni-modal (and normal), while
linear pooling, in general, may be multi-modal. Moreover,
quantile averaging and linear pooling share the same
mean, while quantile averaging tends to be sharper and
more confident due to the additional spread driven by the
disagreement on the mean in linear pooling.

Is it better to average quantiles (as in quantile av-
eraging) or average probabilities (as in linear pooling)?
By restricting themselves to simple averages, Lichten-
dahl et al. (2013) and Busetti (2017) theoretically and
empirically compared the properties of these two com-
bination strategies and suggested that quantile averaging
seems overall a preferable and viable approach. Licht-
endahl et al. (2013) attributed this, in part, to the fact
that the average probability forecast is, in general, under-
confident while the average quantile forecast is always
sharper. Even when individual forecasts agree on the loca-

tion and the average probability forecast is overconfident,

20
the more overconfident average quantile forecast still of-
fers the possibility of forecast improvements. This is due
to its shape properties, specifically a higher density in
the shoulders and a lower density in the tails. Busetti
(2017) reconfirmed the argument and demonstrated that
quantile averaging performs better than linear pooling
and logarithmic pooling when combining individual fore-
cast distributions with large biases. Incorporating quantile
and probability averaging taken together may be useful
to provide additional insight. Accordingly, three simple
methods were suggested by Lichtendahl et al. (2013) to
blend these two different combination strategies.

Rather than assuming that the entire individual quan-
tile functions are available, one is often provided with
a collection of quantiles corresponding to an equidistant
dense grid of probabilities T ⊆ [0, 1], leading to a loss
of information compared with consideration of the whole
distribution. For instance, the 0.05, 0.25, 0.50, 0.75, and
0.95 quantiles are often elicited in practice, and another
popular choice contains quantiles on all percentiles, i.e.,
T = (0.01, 0.02, . . . , 0.99). Quantile combination, in this
case, turns out to be a special case of the general aggre-
gation rule in Eq. (20). For each quantile level, equally
weighing the quantiles across all individual models is
simple and quite robust, yielding improved forecast skill
relative to the individual models and competitive perfor-
mance relative to a variety of more sophisticated com-
bination strategies (e.g., Busetti, 2017; Ray et al., 2022;
Smyl & Hua, 2019). In cases where sufficient past data is
available, some effort has been directed toward determin-
ing combination weights via a cross-validation framework
to reflect the past out-of-sample performance of the dif-
ferent models and improve the utility of combinations.
Scoring rules for quantile forecast evaluation can be har-
nessed for weight construction (Gneiting & Raftery, 2007;
Grushka-Cockayne, Lichtendahl et al., 2017; Trapero et al.,
2019).

One line of research has looked at tailoring the indi-
vidual weights for different quantile levels, i.e., a separate
weight is allocated for each model and quantile level by
replacing wT+h|T ,i with wT+h|T ,i(τ ) in Eq. (20). For example,
individual quantiles can be weighted by the reciprocal
of the value of the pinball loss function (also referred to
as the quantile loss) (Browell et al., 2020; Wang et al.,
2019; Zhang et al., 2020). This flexible strategy enables
the combination to accommodate the fact that individual
forecasting models may have varying performances at
different quantile levels. However, the number of weights
to be learned scales with the number of quantile lev-
els considered, which makes it challenging to achieve
forecast improvements. Computationally intensive tech-
niques, such as grid search and linear programming (LP),
are applied for weight estimation, which is hardly scalable
to large datasets. Moreover, the datasets involved in their
empirical studies are not large enough to demonstrate the
potential benefits of estimating such a large number of
weights.

As discussed previously in the literature on point fore-
cast combinations, the error in estimating optimal weights
often exacerbates out-of-sample combined forecasts. The
issue is even more problematic when it comes to
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quantile combinations because it is a much more chal-
lenging task to estimate combination weights for a col-
lection of quantiles, especially in the tails of forecast
distributions, than merely for point forecasts defined us-
ing distributions. For example, Ray et al. (2022) failed to
empirically demonstrate the utility of weighting different
quantiles separately by optimizing the weighted interval
score (WIS, Bracher et al., 2021) of the corresponding
combined result. On the other hand, a promising line of
research by Fakoor et al. (2021), in the context of quantile
regression rather than time series forecasting, produced
superior estimates using an aggregation strategy of greater
flexibility than previously introduced. Separate weights
depend on the features of individual models and (pairs of)
quantile levels. They used a scalable stochastic gradient
descent (SGD) algorithm with a monotone operator to
solve the weight optimization problem and prevent the
need for non-crossing constraints. More recently, Berrisch
and Ziel (2021) introduced a new weighting method that
allows individual forecasters to perform differently over
time and within the distribution. This was the first to
consider methods that aggregate across quantiles for op-
timal CRPS-based combinations using pointwise evalu-
ation across the pinball loss. They also demonstrated
the optimal convergence properties and the potential
for performance improvements by considering pointwise
optimization of the weight functions.

An independent line of research has looked at model-
ree combination heuristics, which frequently serve as
enchmarks to measure the effectiveness of newly devel-
ped combination strategies. From a statistical point of
iew, these heuristics involve pooling together Q quan-
iles derived from N individual forecast distributions that
re assumed to have the same values of characteristics
e.g., the quantile function at different quantile levels).
he stacked larger pool is used to draw more precise
stimates of those characteristics without training. Wang
t al. (2019) formally introduced naïve sorting and median-
ased sorting methods, in which a total of N×Q quantiles
re stacked and sorted by ascending order to pick the first
nd median values respectively in consecutive blocks of N
orecasts. Naturally, averaging blocks of N forecasts is also
nother option.
While aggregating quantiles tightly connects with

ggregating probability distributions, there has been little
heoretical work in this area compared to combinations
f probability forecasts which have seen considerable
heoretical advances. One exception is Lichtendahl et al.
2013) which looked at the statistical properties of the
imple average of probability forecasts and the ability to
enefit from averaging. The choice of the combination
eights has only been explored empirically, mainly in the
ontext of energy forecasting (e.g., Browell et al., 2020;
ang et al., 2019) and epidemiological forecasting (e.g.,
ay et al., 2022). Some of these proposals appear practical
nd beneficial, while others appear less useful. Further
esearch is required to explore their utility.

Quantile crossing is a well-known problem caused by
he lack of monotonicity in quantile estimates, which may
rise when different combination weights are utilized
or different quantile levels. Model-free heuristics, such
21
as the median, are also included in such cases. Quan-
tile crossing can be avoided by, e.g., (i) integrating the
aggregation problems for individual models into one op-
timization problem subject to more non-crossing con-
straints (e.g., Bondell et al., 2010; Fakoor et al., 2021),
and (ii) conducting naïve rearrangement after all the com-
bined quantiles are obtained (e.g., Berrisch & Ziel, 2021;
Chernozhukov et al., 2010). The rearrangement operation,
though simple, is frequently recommended in practice
since it will never deteriorate the forecasting performance
in terms of the pinball loss (Chernozhukov et al., 2010).

Interval forecasts form a crucial special case of quan-
tile forecasts, which makes the preceding combination
approaches for quantile forecasts naturally apply to in-
terval forecasts as well. When forming combinations of
interval forecasts, attention should be paid to the fact
that the combined interval forecasts are not guaranteed
to provide target coverage rates (Grushka-Cockayne &
Jose, 2020; Timmermann, 2006; Wallis, 2005). As a result,
when evaluating the combined interval forecasts, proper
scoring approaches that consider both width and coverage
are appealing and can serve as objective functions to
determine combination weights; see, e.g., Gneiting and
Raftery (2007) and Jose and Winkler (2009).

For interval forecasts, six heuristics have been
outlined: (1) simple average, (2) median, (3) envelope,
(4) interior trimming, (5) exterior trimming, and (6) prob-
ability averaging of endpoints (Gaba et al., 2017; Park
& Budescu, 2015). These six heuristics are virtually free
of computational costs and have subsequently been pro-
moted by recent research due to their robustness and
benefits in different scenarios for addressing underconfi-
dence/overconfidence; e.g., Smyl and Hua (2019), Petropou
los and Svetunkov (2020), and Grushka-Cockayne and Jose
(2020). They can easily be extended to address the com-
binations of quantiles by aggregating individual quantiles
in several ways for each quantile level.

Determining combination weights for interval fore-
casts is easier to implement than quantile forecasts since
one only has to consider two quantiles. For example,
by assuming the intervals to be symmetric around the
point forecast, Montero-Manso et al. (2020) used the
combined point forecast produced by a feature-based
meta-learner as the center of the combined interval and
generated the radius as a linear combination of the indi-
vidual radii to minimize the MSIS (mean scaled interval
score, Gneiting & Raftery, 2007) of the interval. The ap-
proach achieved the second position in the M4 competi-
tion with 100,000 time series involved. Subsequent work
by Wang, Kang, Petropoulos and Li (2022) introduced a
feature-based weight determination approach to directly
combine lower and upper bounds of individual interval
forecasts, leading to significant performance improve-
ments compared to individual forecasts and the simple
average.

4. Conclusions and a look to the future

Forecasting plays an indispensable role in decision-

making, where success depends heavily on the accuracy of
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the available forecasts. Even with a slight increase in accu-
racy, remarkable gains may be achieved in activities such
as management planning and strategy setting (Makri-
dakis, 1996; Syntetos et al., 2009). In this regard, forecast
combinations provide an easy path to improving forecast
accuracy by integrating the available information used in
individual forecasts.

In this review, our goal has been to show how forecast
ombinations have evolved over time, identify the poten-
ial and limitations of various methods, and highlight the
reas needing further research. Forecast combinations can
e model-free or model-fitting, linear or nonlinear, static
r time-varying, series-specific or cross-learning, and fre-
uentist or Bayesian. The toolbox of combination methods
as grown in size and sophistication, each with its merits.
hich combination method to choose depends on several

actors, such as the form of forecasts (point forecasts,
robabilistic forecasts, quantiles, etc.), the quality and size
f the model pool, the information available, and the
pecific forecasting problems. There is no clear consensus
n which forecast combination method can be expected
o perform best in one particular setting. Based on this
eview, we summarise some of the current research gaps
nd potential insights for future research in the following
aragraphs.
Continuing to examine simple averaging. Over fifty

years after Bates and Granger’s (1969) pioneering work
on forecast combinations, it is impressive that, in empir-
ical studies, simple averaging still repeatedly dominates
sophisticated weighted combinations, which are theoret-
ically preferred, posing a challenging benchmark to beat.
Although it is well known that the ‘‘forecast combination
puzzle’’ stems from the unstable estimates of combination
weights, researchers still lack comprehensive quantitative
decision guidance on when to choose a simple averaging
strategy over more complex strategies. One exception
is Blanc and Setzer (2016), who merely looked at the
combination of two individual forecasts and proposed
decision rules to decide when to choose simple averag-
ing over the ‘‘optimal’’ weights introduced by Bates and
Granger (1969). In addition, the examination of simple
averaging in the context of probabilistic forecast combi-
nations deserves further attention and development, both
theoretical and empirical.

Keeping combinations sophisticatedly simple. Fore-
casting models and forecast combination methods have
grown swiftly in size and sophistication. Nevertheless,
empirical results are ambiguous, and there is no coherent
evidence that complexity systematically improves fore-
cast accuracy; see, e.g., Green and Armstrong (2015) for a
review comparing simple and complex forecasting meth-
ods. Following Zellner (2001), we suggest the blooming of
sophisticatedly simple combinations to balance the trade-
off between the benefits of tailoring weights for different
individual models and the instability of learned weights
in sophisticated weighting schemes. Additionally, it is
strongly recommended that a detailed analysis is required
to explore in depth how and why various sophisticated
combination strategies work and, thus, provide more in-
sights into which combination method to choose in a
22
particular situation; Petropoulos et al. (2018a) provided
a good example of this kind of work.

Obtaining statistical inference for the combination
forecasts. The ‘‘forecast combination puzzle’’ revolves pri-
marily around choosing fixed simple weights or random
‘‘optimal’’ ones. A related aspect to the puzzle, but some-
how different from it, is that the randomness of the com-
bination weights (and, in particular, the correlation with
the forecasts) makes it difficult to perform statistical in-
ference for the weighted combined forecast. A standard
error is nontrivial to obtain in most cases, let alone the
sampling distribution. Getting the combined forecast is
one aspect; what to do with it in a statistical sense is an-
other aspect. Therefore, future studies on the randomness
of combination weights and the statistical inference for
the combined forecasts would be of interest.

Selecting forecasts to be combined. The pool of in-
ividual forecasts lays the foundation for the utility of
orecast combinations. These forecasts may come from
tatistical or machine learning models based on observed
ata, or be elicited from experts. Empirical evidence sug-
ests that the future lies in the combination of statistical
nd machine learning generated forecasts and the incor-
oration of human judgment (Makridakis et al., 2020a;
etropoulos et al., 2022; Petropoulos, Kourentzes et al.,
018). Given a large number of available forecasts, se-
ecting a subset of combinations becomes particularly
ivotal to improving forecast skills and reducing com-
utational costs. Various crucial issues in selecting fore-
asts have to be addressed, such as accuracy, robustness,
iversity, and calibration when considering probabilistic
orecasts (Lichtendahl & Winkler, 2020; Wang, Kang & Li,
022). However, most of the existing algorithms perform
d hoc selections and lack statistical rationale (Kourentzes
t al., 2019). Therefore, further attention should be paid
o developing empirical guidelines and quantitative met-
ics to help forecasters select forecasts before combina-
ions. Since a zero weight in the past does not indicate a
ero weight in the future, time-varying subset selection
or forecast combination would also be an interesting
esearch direction.

Advancing the theory of nonlinear combinations.
hile the benefits of linear combinations of multiple

orecasts are well appreciated in the forecasting liter-
ture, less attention has been paid to nonlinear com-
ination schemes for modeling nonlinear dependencies
mong individual forecasts. This is possibly due to the lack
f theoretical foundations and poor records of success;
ee Timmermann (2006) for a brief review of the related
iterature. Nonlinearities are currently addressed using
eural networks or an additional nonlinear term in the
ombination equation. However, the limited evidence on
he benefits of involving nonlinear combinations is mainly
erived from only a few time series and is not entirely
nconvincing. Consequently, we expect more theoretical
nd empirical work in this area soon.
Focusing more on probabilistic forecast combinations.

n probabilistic forecast combinations, linear pooling and
uantile averaging suggest two different ways of thinking
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— linear pooling entails vertically averaging the indi-
viduals’ CDFs, while quantile aggregation entails hori-
zontally averaging. Accordingly, their combined forecasts
hold other properties and benefit differently from the
combination. For example, the shape-preserving property
of quantile averaging may be appealing in certain set-
tings (Lichtendahl et al., 2013). Over the past decade,
linear pooling has attracted considerable attention, theo-
retically and empirically achieving appreciable advance-
ments. Quantile averaging, however, has not received
much attention, especially in the theoretical realm. Fur-
thermore, when tailoring combination weights for dif-
ferent quantile levels, the instability of the estimated
weights is especially problematic since many parameters
have to be estimated. This issue will likely harm the
calibration and sharpness of the out-of-sample combined
forecasts, making quantile averaging challenging. Taken
together, we expect combinations of quantiles to be an
important area of research in the future.

Discussing if, how, and when it is helpful to interpret
ombination weights. In probability forecast combina-
tions, some combination approaches have the property
that poorly performing forecasts will almost always be
rejected in favor of the best one as the sample size tends
to infinity. For example, BMA reduces to model selection
for a large sample size, with the best model receiving
a weight very close to one. See Section 3.4 for more
detailed discussions. However, it is sometimes found that
individually ‘‘bad’’ forecasts may still be helpful in combi-
nations (e.g., Geweke & Amisano, 2011). In this case, one
does not want to zero-weight these bad forecasts (in the
limit, as the sample size goes to infinity). This relates to
the question of if, how, and when it is helpful to interpret
combination weights, another future research direction
worth exploring.

Taking account of correlations among individual fore-
casts. Some sort of correlations among individual fore-
casts are expected as they are likely to share the same
data, overlapping information, similar forecasting models,
and a common training process. Such correlations can be
critical and seriously impact the utility of forecast combi-
nations (De Menezes et al., 2000). An extensive body of
literature on point forecast combinations has attempted
to account for correlations in terms of weight estimation,
even though these correlations can be poorly estimated.
Despite the existence of such correlations, the literature
on probabilistic forecast combinations has paid scant at-
tention to addressing them; they are discussed primarily
from a Bayesian perspective (e.g., McAlinn & West, 2019;
Winkler, 1981). Therefore, another interesting path for
further research would be considering correlations among
individual forecasts in weighting schemes for probabilistic
forecast combinations.

Cross-learning and feature engineering. Instead of
combinations in a series-by-series fashion, numerous
studies have confirmed the beneficial usage of infor-
mation from multiple series to study common patterns
among series, thereby facilitating the determination of
combination weights and exploiting the benefits of cross-
learning. The evidence of the potential of cross-learning
has largely come from competitions (e.g., Makridakis et al.,
23
2020a, 2022) and empirical studies (e.g., Ma & Fildes,
2021). Moreover, access to feature engineering can lead
to improved forecasting performance, providing valuable
information for forecast combinations in a cross-learning
fashion (Kang et al., 2021; Montero-Manso et al., 2020). In
this regard, we believe that further research needs to be
done on feature engineering for time series data to unlock
the potential of cross-learning.

Encouraging researchers to contribute open-source
software and datasets. In this paper, we list some open-
source packages linking to the developed approaches for
forecast combinations (e.g., fable, ForecastComb, and fore
astHybrid packages for R), time series features (e.g., feast
and tsfeatures packages for R and tsfresh and Kats pack-
ages for Python), and time series generations (e.g., fore-
cast and gratis packages for R). We emphasize that open-
ource research software is a pathway to impact. Recent
ecades have witnessed a dramatically accelerating pace
f advancements in computing. Consequently, it is time to
romote the idea of researchers producing open-source
oftware that provides evidence and support behind all
he statements. Publicly releasing new software benefits
esearchers and end users. It reduces research costs, al-
ows for quick implementation, helps people modify the
xisting software, and adapts it to other research ideas.
e also encourage researchers to contribute open-source
atasets because of the benefits of investigating and com-
aring the performance of newly developed methods; see,
.g., Godahewa et al. (2021a, 2021b) for a time series
orecasting archive containing 20 publicly available time
eries datasets from different domains.
In this paper, we take the multiple forecasts to be com-

ined essentially as given and limit ourselves to combina-
ions of forecasts derived from separate models for a given
eries. These separate models can be identified with dif-
erent model forms and/or the same model form with dif-
erent parameters. However, we highlight that there are
ther types of forecast combinations in the forecasting lit-
rature. For example, one approach involves constructing
eplicas of the original time series through various manip-
lations of local curvatures, frequency transformation, or
ootstrapping. Subsequently, multiple forecasts are pro-
uced to form the final combined forecasts, leading to a
ide variety of approaches such as the theta method (As-
imakopoulos & Nikolopoulos, 2000), temporal aggrega-
ion (e.g., Kourentzes & Petropoulos, 2016; Kourentzes,
etropoulos & Trapero, 2014; Kourentzes et al., 2017),
agging (e.g., Bergmeir et al., 2016; Petropoulos et al.,
018a), and structural combination (e.g., Rendon-Sanchez
De Menezes, 2019). Besides, one can construct a com-
ination by averaging model parameters of multiple sub-
eries to achieve ultra-long time series forecasting (e.g.,
ang et al., 2022a). Another approach involves form-

ng a hierarchical structure using multiple time series
hat are structurally connected based on geographic or
ogical reasons and reconciling multiple forecasts across
he hierarchy, leading to various hierarchical aggregation
ethods (e.g., Ben Taieb et al., 2021; Hollyman et al.,
021; Hyndman et al., 2011; Wickramasuriya et al., 2019).
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