School of Economics and Management
Beihang University
http://yanfei.site
if
and else
: testing a condition and acting on it
for
: execute a loop a fixed number of times
while
: execute a loop while a condition is true
repeat
: execute an infinite loop (must break
out of it to stop)
break
: break the execution of a loop
next
: skip an interation of a loop
if
-else
The if
-else
combination is probably the most commonly used control structure in R (or perhaps any language). For starters, you can just use the if
statement.
if(<condition>) { ## do something } ## Continue with rest of code
if
-else
If you have an action you want to execute when the condition is false, then you need an else
clause.
if(<condition>) { ## do something } else { ## do something else }
You can have a series of tests by following the initial if
with any number of else if
s.
if(<condition1>) { ## do something } else if(<condition2>) { ## do something different } else { ## do something different }
if
-else
Example## Generate a uniform random number x <- runif(1, 0, 10) if (x > 3) { y <- 10 } else { y <- 0 }
Or you can write:
y <- if (x > 3) { 10 } else { 0 }
for
LoopsFor loops are most commonly used for iterating over the elements of an object (list, vector, etc.)
for (i in 1:10) { print(i) }
## [1] 1 ## [1] 2 ## [1] 3 ## [1] 4 ## [1] 5 ## [1] 6 ## [1] 7 ## [1] 8 ## [1] 9 ## [1] 10
for
Loops ExampleThe following three loops all have the same behavior.
x <- c("a", "b", "c", "d") for (i in 1:4) { ## Print out each element of 'x' print(x[i]) }
## [1] "a" ## [1] "b" ## [1] "c" ## [1] "d"
The seq_along()
function is commonly used in conjunction with for loops in order to generate an integer sequence based on the length of an object (in this case, the object x
).
## Generate a sequence based on length of 'x' for (i in seq_along(x)) { print(x[i]) }
## [1] "a" ## [1] "b" ## [1] "c" ## [1] "d"
It is not necessary to use an index-type variable.
for (letter in x) { print(letter) }
## [1] "a" ## [1] "b" ## [1] "c" ## [1] "d"
for
loopsfor
loops can be nested inside of each other.
x <- matrix(1:6, 2, 3) for(i in seq_len(nrow(x))) { for(j in seq_len(ncol(x))) { print(x[i, j]) } }
Nested loops are commonly needed for multidimensional or hierarchical data structures (e.g. matrices, lists).
while
LoopsWhile loops begin by testing a condition. If it is true, then they execute the loop body. Once the loop body is executed, the condition is tested again, and so forth, until the condition is false, after which the loop exits.
count <- 0 while (count < 10) { print(count) count <- count + 1 }
## [1] 0 ## [1] 1 ## [1] 2 ## [1] 3 ## [1] 4 ## [1] 5 ## [1] 6 ## [1] 7 ## [1] 8 ## [1] 9
While loops can potentially result in infinite loops if not written properly. Use with care!
repeat
Loopsrepeat
initiates an infinite loop right from the start. The only way to exit a repeat
loop is to call break
.
x0 <- 1 tol <- 1e-08 repeat { x1 <- computeEstimate() if (abs(x1 - x0) < tol) { ## Close enough? break } else { x0 <- x1 } }
next
, break
next
is used to skip an iteration of a loop.
for (i in 1:100) { if (i <= 20) { ## Skip the first 20 iterations next } ## Do something here }
break
is used to exit a loop immediately, regardless of what iteration the loop may be on.
for (i in 1:100) { print(i) if (i > 20) { ## Stop loop after 20 iterations break } }
Control structures like if
, while
, and for
allow you to control the flow of an R program
Infinite loops should generally be avoided, even if (you believe) they are theoretically correct.
Control structures mentioned here are primarily useful for writing programs; for command-line interactive work, the "apply" functions are more useful.
Functions are defined using the function()
directive and are stored as R objects just like anything else. In particular, they are R objects of class "function".
f <- function() { cat("Hello, world!\n") } f()
## Hello, world!
The last aspect of a basic function is the function arguments.
f <- function(num) { for (i in seq_len(num)) { cat("Hello, world!\n") } } f(3)
## Hello, world! ## Hello, world! ## Hello, world!
If you find yourself doing a lot of cutting and pasting, that's usually a good sign that you might need to write a function.
This next function returns the total number of characters printed to the console.
f <- function(num) { hello <- "Hello, world!\n" for (i in seq_len(num)) { cat(hello) } chars <- nchar(hello) * num chars } meaningoflife <- f(3)
## Hello, world! ## Hello, world! ## Hello, world!
print(meaningoflife)
## [1] 42
Try this:
f()
We can modify this behavior by setting a default value for the argument num
.
f <- function(num = 1) { hello <- "Hello, world!\n" for (i in seq_len(num)) { cat(hello) } chars <- nchar(hello) * num chars } f() ## Use default value for 'num'
## Hello, world!
## [1] 14
f(2) ## Use user-specified value
## Hello, world! ## Hello, world!
## [1] 28
At this point, we have written a function that
has one formal argument named num
with a default value of 1. The formal arguments are the arguments included in the function definition. The formals()
function returns a list of all the formal arguments of a function
prints the message "Hello, world!" to the console a number of times indicated by the argument num
returns the number of characters printed to the console
R assigns the first value to the first argument, the second value to second argument, etc. So in the following call to rnorm()
str(rnorm)
## function (n, mean = 0, sd = 1)
mydata <- rnorm(100, 2, 1) ## Generate some data
100 is assigned to the n
argument, 2 is assigned to the mean
argument, and 1 is assigned to the sd
argument, all by positional matching.
## Positional match first argument, default for 'na.rm' sd(mydata)
## [1] 1.028851
## Specify 'x' argument by name, default for 'na.rm' sd(x = mydata)
## [1] 1.028851
## Specify both arguments by name sd(x = mydata, na.rm = FALSE)
## [1] 1.028851
When specifying the function arguments by name, it doesn't matter in what order you specify them.
## Specify both arguments by name sd(na.rm = FALSE, x = mydata)
## [1] 1.028851
You can mix positional matching with matching by name.
sd(na.rm = FALSE, mydata)
## [1] 1.028851
Here, the mydata
object is assigned to the x
argument, because it's the only argument not yet specified.
Below is the argument list for the lm()
function, which fits linear models to a dataset.
args(lm)
## function (formula, data, subset, weights, na.action, method = "qr", ## model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, ## contrasts = NULL, offset, ...) ## NULL
The following two calls are equivalent.
lm(data = mydata, y ~ x, model = FALSE, 1:100) lm(y ~ x, mydata, 1:100, model = FALSE)
Function arguments can also be partially matched, which is useful for interactive work. The order of operations when given an argument is
...
Argument...
argument, which indicate a variable number of arguments that are usually passed on to other functions.The ...
argument is often used when extending another function and you don’t want to copy the entire argument list of the original function
For example, a custom mean function may want to make use of the default mean()
function along with its entire argument list. The function below changes the default for the na.rm
argument to the value na.rm = "TRUE"
(the original default was na.rm = "FALSE"
).
mymean <- function(x, na.rm = TRUE, ...) { mean(x, na.rm = na.rm, ...) ## Pass '...' to 'mean?rnorm' function } x <- c(1, 2, NA) mean(x) mymean(x)
Functions can be defined using the function()
directive and are assigned to R objects just like any other R object
Functions have can be defined with named arguments; these function arguments can have default values
Functions arguments can be specified by name or by position in the argument list
Functions always return the last expression evaluated in the function body
A variable number of arguments can be specified using the special ...
argument in a function definition.
Writing for
and while
loops is useful when programming but not particularly easy when working interactively on the command line. Multi-line expressions with curly braces are just not that easy to sort through when working on the command line. R has some functions which implement looping in a compact form to make your life easier.
lapply()
: Loop over a list and evaluate a function on each element
sapply()
: Same as lapply
but try to simplify the result
apply()
: Apply a function over the margins of an array
tapply()
: Apply a function over subsets of a vector
mapply()
: Multivariate version of lapply
lapply()
The lapply()
function does the following simple series of operations:
l
is for "list").This function takes three arguments: (1) a list X
; (2) a function (or the name of a function) FUN
; (3) other arguments via its ...
argument. If X
is not a list, it will be coerced to a list using as.list()
.
lapply()
Example 1Here's an example of applying the mean()
function to all elements of a list. If the original list has names, the the names will be preserved in the output.
x <- list(a = 1:5, b = rnorm(10)) lapply(x, mean)
## $a ## [1] 3 ## ## $b ## [1] 0.4584475
Notice that here we are passing the mean()
function as an argument to the lapply()
function. Functions in R can be used this way and can be passed back and forth as arguments just like any other object. When you pass a function to another function, you do not need to include the open and closed parentheses ()
like you do when you are calling a function.
lapply()
Example 2x <- list(a = 1:4, b = rnorm(10), c = rnorm(20, 1), d = rnorm(100, 5)) lapply(x, mean)
## $a ## [1] 2.5 ## ## $b ## [1] -0.2086744 ## ## $c ## [1] 0.7933276 ## ## $d ## [1] 4.964264
lapply()
Example 3x <- 1:4 lapply(x, runif)
## [[1]] ## [1] 0.03027641 ## ## [[2]] ## [1] 0.9230474 0.6971870 ## ## [[3]] ## [1] 0.1742712 0.2909109 0.8068311 ## ## [[4]] ## [1] 0.01373438 0.58143460 0.90845395 0.14748229
Now how about other arguments?
Here, the min = 0
and max = 10
arguments are passed down to runif()
every time it gets called.
x <- 1:4 lapply(x, runif, min = 0, max = 10)
## [[1]] ## [1] 7.502668 ## ## [[2]] ## [1] 9.654888 2.876562 ## ## [[3]] ## [1] 3.0762490 9.4177522 0.3042502 ## ## [[4]] ## [1] 2.524403 5.582836 7.253145 3.342289
lapply()
Example 4Here I am creating a list that contains two matrices.
x <- list(a = matrix(1:4, 2, 2), b = matrix(1:6, 3, 2)) x
## $a ## [,1] [,2] ## [1,] 1 3 ## [2,] 2 4 ## ## $b ## [,1] [,2] ## [1,] 1 4 ## [2,] 2 5 ## [3,] 3 6
lapply(x, function(elt) { elt[, 1] })
## $a ## [1] 1 2 ## ## $b ## [1] 1 2 3
I can also define the function separately.
f <- function(elt) { elt[, 1] } lapply(x, f)
## $a ## [1] 1 2 ## ## $b ## [1] 1 2 3
sapply()
The sapply()
function behaves similarly to lapply()
; the only real difference is in the return value. sapply()
will try to simplify the result of lapply()
if possible. Essentially, sapply()
calls lapply()
on its input and then applies the following algorithm:
If the result is a list where every element is length 1, then a vector is returned
If the result is a list where every element is a vector of the same length (> 1), a matrix is returned.
If it can’t figure things out, a list is returned
Here's the result of calling lapply()
.
x <- list(a = 1:4, b = rnorm(10), c = rnorm(20, 1), d = rnorm(100, 5)) lapply(x, mean)
## $a ## [1] 2.5 ## ## $b ## [1] 0.2734051 ## ## $c ## [1] 1.287163 ## ## $d ## [1] 4.875645
Here's the result of calling sapply()
on the same list.
sapply(x, mean)
## a b c d ## 2.5000000 0.2734051 1.2871626 4.8756445
split()
The split()
function takes a vector or other objects and splits it into groups determined by a factor or list of factors.
The arguments to split()
are
str(split)
## function (x, f, drop = FALSE, ...)
where
x
is a vector (or list) or data framef
is a factor (or coerced to one) or a list of factorsdrop
indicates whether empty factors levels should be droppedThe combination of split()
and a function like lapply()
or sapply()
is a common paradigm in R.
split()
ExampleHere we simulate some data and split it according to a factor variable. Note that we use the gl()
function to "generate levels" in a factor variable.
x <- c(rnorm(10), runif(10), rnorm(10, 1)) f <- gl(3, 10) split(x, f)
## $`1` ## [1] 0.5213576 -0.4949237 -1.4574318 -1.2516105 -0.2620901 -0.6822597 ## [7] -0.2911013 0.3872132 -0.1806973 -0.8026308 ## ## $`2` ## [1] 0.8886499 0.1562210 0.9131451 0.5814816 0.5589196 0.6086722 0.7820416 ## [8] 0.5149777 0.9720512 0.1489217 ## ## $`3` ## [1] 0.7651050 0.5640002 1.5668331 1.4799608 0.1858316 2.7911229 ## [7] 0.9544162 -0.4530234 3.0252256 1.7288048
A common idiom is split
followed by an lapply
.
lapply(split(x, f), mean)
## $`1` ## [1] -0.4514174 ## ## $`2` ## [1] 0.6125082 ## ## $`3` ## [1] 1.260828
library(datasets) head(airquality)
## Ozone Solar.R Wind Temp Month Day ## 1 41 190 7.4 67 5 1 ## 2 36 118 8.0 72 5 2 ## 3 12 149 12.6 74 5 3 ## 4 18 313 11.5 62 5 4 ## 5 NA NA 14.3 56 5 5 ## 6 28 NA 14.9 66 5 6
We can split the airquality
data frame by the Month
variable so that we have separate sub-data frames for each month.
s <- split(airquality, airquality$Month) str(s)
## List of 5 ## $ 5:'data.frame': 31 obs. of 6 variables: ## ..$ Ozone : int [1:31] 41 36 12 18 NA 28 23 19 8 NA ... ## ..$ Solar.R: int [1:31] 190 118 149 313 NA NA 299 99 19 194 ... ## ..$ Wind : num [1:31] 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ... ## ..$ Temp : int [1:31] 67 72 74 62 56 66 65 59 61 69 ... ## ..$ Month : int [1:31] 5 5 5 5 5 5 5 5 5 5 ... ## ..$ Day : int [1:31] 1 2 3 4 5 6 7 8 9 10 ... ## $ 6:'data.frame': 30 obs. of 6 variables: ## ..$ Ozone : int [1:30] NA NA NA NA NA NA 29 NA 71 39 ... ## ..$ Solar.R: int [1:30] 286 287 242 186 220 264 127 273 291 323 ... ## ..$ Wind : num [1:30] 8.6 9.7 16.1 9.2 8.6 14.3 9.7 6.9 13.8 11.5 ... ## ..$ Temp : int [1:30] 78 74 67 84 85 79 82 87 90 87 ... ## ..$ Month : int [1:30] 6 6 6 6 6 6 6 6 6 6 ... ## ..$ Day : int [1:30] 1 2 3 4 5 6 7 8 9 10 ... ## $ 7:'data.frame': 31 obs. of 6 variables: ## ..$ Ozone : int [1:31] 135 49 32 NA 64 40 77 97 97 85 ... ## ..$ Solar.R: int [1:31] 269 248 236 101 175 314 276 267 272 175 ... ## ..$ Wind : num [1:31] 4.1 9.2 9.2 10.9 4.6 10.9 5.1 6.3 5.7 7.4 ... ## ..$ Temp : int [1:31] 84 85 81 84 83 83 88 92 92 89 ... ## ..$ Month : int [1:31] 7 7 7 7 7 7 7 7 7 7 ... ## ..$ Day : int [1:31] 1 2 3 4 5 6 7 8 9 10 ... ## $ 8:'data.frame': 31 obs. of 6 variables: ## ..$ Ozone : int [1:31] 39 9 16 78 35 66 122 89 110 NA ... ## ..$ Solar.R: int [1:31] 83 24 77 NA NA NA 255 229 207 222 ... ## ..$ Wind : num [1:31] 6.9 13.8 7.4 6.9 7.4 4.6 4 10.3 8 8.6 ... ## ..$ Temp : int [1:31] 81 81 82 86 85 87 89 90 90 92 ... ## ..$ Month : int [1:31] 8 8 8 8 8 8 8 8 8 8 ... ## ..$ Day : int [1:31] 1 2 3 4 5 6 7 8 9 10 ... ## $ 9:'data.frame': 30 obs. of 6 variables: ## ..$ Ozone : int [1:30] 96 78 73 91 47 32 20 23 21 24 ... ## ..$ Solar.R: int [1:30] 167 197 183 189 95 92 252 220 230 259 ... ## ..$ Wind : num [1:30] 6.9 5.1 2.8 4.6 7.4 15.5 10.9 10.3 10.9 9.7 ... ## ..$ Temp : int [1:30] 91 92 93 93 87 84 80 78 75 73 ... ## ..$ Month : int [1:30] 9 9 9 9 9 9 9 9 9 9 ... ## ..$ Day : int [1:30] 1 2 3 4 5 6 7 8 9 10 ...
Then we can take the column means for Ozone
, Solar.R
, and Wind
for each sub-data frame.
lapply(s, function(x) { colMeans(x[, c("Ozone", "Solar.R", "Wind")], na.rm = TRUE) })
## $`5` ## Ozone Solar.R Wind ## 23.61538 181.29630 11.62258 ## ## $`6` ## Ozone Solar.R Wind ## 29.44444 190.16667 10.26667 ## ## $`7` ## Ozone Solar.R Wind ## 59.115385 216.483871 8.941935 ## ## $`8` ## Ozone Solar.R Wind ## 59.961538 171.857143 8.793548 ## ## $`9` ## Ozone Solar.R Wind ## 31.44828 167.43333 10.18000
Using sapply()
might be better here for a more readable output.
sapply(s, function(x) { colMeans(x[, c("Ozone", "Solar.R", "Wind")], na.rm = TRUE) })
## 5 6 7 8 9 ## Ozone 23.61538 29.44444 59.115385 59.961538 31.44828 ## Solar.R 181.29630 190.16667 216.483871 171.857143 167.43333 ## Wind 11.62258 10.26667 8.941935 8.793548 10.18000
tapply()
tapply()
is used to apply a function over subsets of a vector. It can be thought of as a combination of split()
and sapply()
for vectors only.
str(tapply)
## function (X, INDEX, FUN = NULL, ..., default = NA, simplify = TRUE)
The arguments to tapply()
are as follows:
X
is a vectorINDEX
is a factor or a list of factors (or else they are coerced to factors)FUN
is a function to be appliedFUN
simplify
, should we simplify the result?tapply()
ExampleGiven a vector of numbers, one simple operation is to take group means.
## Simulate some data x <- c(rnorm(10), runif(10), rnorm(10, 1)) ## Define some groups with a factor variable f <- gl(3, 10) f
## [1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 ## Levels: 1 2 3
tapply(x, f, mean)
## 1 2 3 ## -0.08801145 0.57832382 0.61165490
It is equivalent to:
sapply(split(x, f), mean)
## 1 2 3 ## -0.08801145 0.57832382 0.61165490
apply()
apply()
is not really faster than writing a loop, but it works in one line and is highly compact.str(apply)
## function (X, MARGIN, FUN, ...)
The arguments to apply()
are
X
is an arrayMARGIN
is an integer vector indicating which margins should be “retained”.FUN
is a function to be applied...
is for other arguments to be passed to FUN
apply()
ExampleHere I create a 20 by 10 matrix of Normal random numbers. I then compute the mean of each column.
x <- matrix(rnorm(200), 20, 10) apply(x, 2, mean) ## Take the mean of each column
## [1] -0.003091311 -0.121190034 0.041603721 -0.242930732 0.101452141 ## [6] -0.242144753 -0.160848546 -0.025957193 0.425527810 0.275249740
I can also compute the sum of each row.
apply(x, 1, sum) ## Take the mean of each row
## [1] 5.87282005 -2.12191976 -0.72172661 -0.04755029 -0.02887617 ## [6] 1.85687518 -5.53461566 -3.38001553 3.82259527 2.24135008 ## [11] 2.85755848 -3.99765124 1.07589800 1.66616429 2.88450445 ## [16] -5.14690929 -0.82670841 2.93204919 1.80638471 -4.25680989
apply()
, the return value was a vector of numbers.MARGIN
argument essentially indicates to apply()
which dimension of the array you want to preserve or retain. So when taking the mean of each column, I specifyapply(x, 2, mean)
For the special case of column/row sums and column/row means of matrices, we have some useful shortcuts.
rowSums
= apply(x, 1, sum)
rowMeans
= apply(x, 1, mean)
colSums
= apply(x, 2, sum)
colMeans
= apply(x, 2, mean)
The shortcut functions are heavily optimized and hence are much faster, but you probably won’t notice unless you’re using a large matrix. Another nice aspect of these functions is that they are a bit more descriptive. It's arguably more clear to write colMeans(x)
in your code than apply(x, 2, mean)
.
You can do more than take sums and means with the apply()
function. For example, you can compute quantiles of the rows of a matrix using the quantile()
function.
x <- matrix(rnorm(200), 20, 10) ## Get row quantiles apply(x, 1, quantile, probs = c(0.25, 0.75))
## [,1] [,2] [,3] [,4] [,5] [,6] ## 25% -0.3170086 -0.2744589 -0.2732093 -1.282734 -0.6017231 -0.4935691 ## 75% 0.9584784 0.8506353 0.3354259 -0.322540 0.4121794 0.6357492 ## [,7] [,8] [,9] [,10] [,11] [,12] ## 25% -0.9245659 -0.2932466 -0.3625397 -0.4836953 -1.6742613 -0.4748696 ## 75% 0.1728844 0.7594619 0.4205175 0.8818359 0.7489506 0.5036317 ## [,13] [,14] [,15] [,16] [,17] [,18] ## 25% -0.2073411 -0.6966284 -1.4482386 0.2716661 -0.3652313 -0.6475931 ## 75% 0.8181118 0.8165583 0.2464965 0.8360142 0.4953018 0.7935044 ## [,19] [,20] ## 25% -0.6373888 -0.3044617 ## 75% 0.2549292 0.9213822
Notice that I had to pass the probs = c(0.25, 0.75)
argument to quantile()
via the ...
argument to apply()
.
mapply()
The mapply()
function is a multivariate apply of sorts which applies a function in parallel over a set of arguments. Recall that lapply()
and friends only iterate over a single R object. What if you want to iterate over multiple R objects in parallel? This is what mapply()
is for.
str(mapply)
## function (FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)
The arguments to mapply()
are
FUN
is a function to apply...
contains R objects to apply overMoreArgs
is a list of other arguments to FUN
.SIMPLIFY
indicates whether the result should be simplifiedThe mapply()
function has a different argument order from lapply()
because the function to apply comes first rather than the object to iterate over. The R objects over which we apply the function are given in the ...
argument because we can apply over an arbitrary number of R objects.
mapply()
ExampleFor example, the following is tedious to type
list(rep(1, 4), rep(2, 3), rep(3, 2), rep(4, 1))
With mapply()
, instead we can do
mapply(rep, 1:4, 4:1)
## [[1]] ## [1] 1 1 1 1 ## ## [[2]] ## [1] 2 2 2 ## ## [[3]] ## [1] 3 3 ## ## [[4]] ## [1] 4
This passes the sequence 1:4
to the first argument of rep()
and the sequence 4:1
to the second argument.
Here's another example for simulating randon Normal variables.
noise <- function(n, mean, sd) { rnorm(n, mean, sd) } ## Simulate 5 randon numbers noise(5, 1, 2)
## [1] 1.788075 3.714255 -1.153818 -0.490320 1.908989
Here we can use mapply()
to pass the sequence 1:5
separately to the noise()
function so that we can get 5 sets of random numbers, each with a different length and mean.
x <- mapply(noise, 1000, 1:5, 1:5) apply(x, 2, mean)
## [1] 1.008757 1.901239 3.046719 3.892496 4.922481
The above call to mapply()
is the same as
list(noise(1000, 1, 1), noise(1000, 2, 2), noise(1000, 3, 3), noise(1000, 4, 4), noise(1000, 5, 5))
## [[1]] ## [1] 1.955302252 2.959080308 1.002897509 -0.619376275 0.755031481 ## [6] 1.247176161 1.139343055 0.956316783 1.999033496 2.007217922 ## [11] 1.907202239 2.515733734 0.568705723 1.037764349 1.463947317 ## [16] -0.562678416 0.530878336 0.698281784 0.813450374 -0.376368757 ## [21] 1.762426041 2.009782015 1.566885821 1.297978828 -0.358044777 ## [26] 1.799450685 1.180235900 1.369676766 0.560836653 0.709053535 ## [31] 0.894317485 -0.487062606 0.977079278 -0.288412905 1.941884617 ## [36] 1.813371867 2.893191258 0.666378998 0.860794265 2.507273808 ## [41] -0.131754115 1.698205510 0.284518407 2.057127029 -0.341743406 ## [46] -0.104689686 1.807785051 2.967363459 0.624099916 2.439206482 ## [51] 0.039300528 0.640395553 0.812767239 0.333379054 2.032925705 ## [56] 0.543225069 0.780512975 0.073612458 0.994054943 -0.105819107 ## [61] -1.294198628 -0.136701291 1.481351486 0.956254469 0.807420280 ## [66] 0.089639104 0.402769765 -0.001309240 0.591956643 2.028195930 ## [71] 1.212541607 1.939494616 1.179700104 1.533248319 -0.790666484 ## [76] 2.459636013 2.315306286 1.161278300 -0.050314743 -0.152412727 ## [81] 1.517029350 1.775076008 -0.087907192 -0.468461708 0.189496731 ## [86] 1.511088282 0.388231795 1.382248035 0.555993100 2.465056900 ## [91] 1.040933649 1.521867598 1.103172259 1.360169111 0.519167753 ## [96] 0.941802625 2.219611443 1.124194952 1.899478437 2.683373577 ## [101] 2.828082108 0.705631742 0.169909497 0.030087209 2.174638831 ## [106] 1.587533670 1.220248553 -0.403001412 4.020572766 1.502244961 ## [111] 0.217650529 1.143285142 1.743664382 0.021626396 1.065347298 ## [116] -1.311855901 1.680834449 2.752660975 0.710269579 -0.125084412 ## [121] 0.703076145 0.252047097 0.929062952 1.055982970 3.095123080 ## [126] 0.883715567 0.305355061 -0.105191215 0.035014366 0.590540592 ## [131] 0.942612479 0.855909683 1.404057978 0.218306442 0.877912721 ## [136] 0.923666471 -0.118379631 1.434704377 1.092584710 0.439581614 ## [141] 0.706106273 1.431611127 1.989959835 2.113997800 2.005985517 ## [146] 1.238383266 1.548127891 0.257784679 -0.025883497 1.532490710 ## [151] 0.112290626 1.199379038 -0.877036558 1.470128053 0.668684625 ## [156] 3.599719894 0.453279501 1.029429260 1.348491068 -1.196485790 ## [161] 1.638292546 1.172614985 1.198878635 2.972526801 1.083990849 ## [166] -0.126119885 -0.094169216 0.764844287 0.600829337 2.941671329 ## [171] 2.947426790 0.827901751 3.566843805 0.115375306 1.770720039 ## [176] 1.522405799 0.744900291 0.097041785 1.872323654 0.740838313 ## [181] 1.792337774 1.297025697 1.488711099 0.117211294 -0.130532884 ## [186] 0.095245703 2.329663614 0.679869500 1.396062829 -0.001565089 ## [191] 0.642259725 0.421377810 1.764338723 0.659822185 0.383588940 ## [196] 1.079264938 0.743434351 0.120598614 1.345147859 0.387118738 ## [201] 0.135614719 1.413325820 0.528099251 1.911301241 1.225218532 ## [206] 0.473076530 2.079978488 1.493439348 2.177776093 1.212341723 ## [211] 1.473181877 1.873185100 1.437455661 2.050456175 0.026319993 ## [216] 0.798555495 1.693104430 0.333386062 1.284931712 0.971178987 ## [221] 0.310535477 1.707205804 0.665354007 0.695620928 0.162496808 ## [226] 2.327153993 1.044290430 1.654680193 -0.550902361 2.322449957 ## [231] 0.196581380 1.806212498 -0.381891882 1.248167301 1.360095612 ## [236] 0.092932271 2.591803439 1.394059942 1.947097046 0.697971205 ## [241] 0.593751297 -0.539132268 2.125972655 1.277760437 2.912691031 ## [246] 1.134276527 1.241298367 2.744218101 0.131025135 0.377182114 ## [251] -0.221596832 0.141852499 2.338735200 0.550056505 1.334720772 ## [256] 1.926276992 2.492337775 2.578180107 1.981350368 1.015507630 ## [261] 0.435052174 -0.422334742 1.666511431 1.789839811 0.320367088 ## [266] 2.105201998 0.417209345 0.917045389 1.396386207 0.484592085 ## [271] 0.869275389 0.231089370 1.104408755 2.073248840 2.764373765 ## [276] 1.631864175 2.474007615 2.080721701 2.290480744 1.620227059 ## [281] -0.468932625 0.867823999 -0.375534824 0.660907316 1.849628499 ## [286] 0.732876691 0.896497797 0.254437147 -0.167867387 1.690027882 ## [291] 1.166910261 0.380410727 2.255612622 0.403082365 1.335714982 ## [296] 1.470211898 1.950688433 2.201924397 -0.233632088 1.038703116 ## [301] 0.182034876 0.798245917 1.119917478 1.058133954 1.685758923 ## [306] 1.331793058 0.892071386 0.787753671 0.140889291 0.741885208 ## [311] 0.271427247 2.569952399 1.413478710 2.293195005 2.211974052 ## [316] -0.241305343 2.565294828 0.149093006 1.266073974 1.791502605 ## [321] 0.231398873 0.415023378 1.501830969 0.630589568 0.791258649 ## [326] 1.547347534 -0.566199552 0.086529580 1.163649493 1.031724064 ## [331] 0.141345008 1.687022492 2.088889464 1.754096197 1.261405891 ## [336] 1.381529499 0.618970679 1.895241608 1.566158648 0.758254113 ## [341] 0.932926986 1.367972401 1.302894828 1.176236854 1.465753988 ## [346] -1.038855933 1.646838007 1.795848674 0.405974639 2.037804656 ## [351] 1.971084047 1.948415425 1.061039921 0.883734725 0.420573736 ## [356] 1.611091366 -0.325186822 3.496598555 0.400462784 1.794998617 ## [361] -0.813388633 0.691166951 1.985535698 0.961151339 0.301480287 ## [366] -0.390030630 2.119013929 0.412114498 1.497942787 2.483232850 ## [371] 1.246197086 2.069333436 0.903617559 1.744516076 -0.395293150 ## [376] 2.681088553 1.294191798 1.601589857 -0.881278794 1.798160737 ## [381] 0.872962466 0.272361538 1.587744650 0.635351007 2.652595124 ## [386] 0.337511033 0.519856471 1.759343961 0.557395106 2.539299290 ## [391] 0.708242529 1.344375345 1.527211467 0.950262234 0.839802539 ## [396] 1.860192225 2.088632282 1.161980673 1.516993937 2.057863271 ## [401] -0.491059903 1.364745083 0.902618976 0.950021827 -0.976651578 ## [406] 2.108855755 0.224476325 -0.235793994 1.387621185 1.204685133 ## [411] 0.839408827 1.936313690 0.832058087 0.187806627 0.329993188 ## [416] 1.179622141 0.951517147 -0.110058207 0.865033162 -0.522863080 ## [421] 2.168196981 0.407227002 0.222310211 1.334318465 1.214156830 ## [426] 0.841155222 -0.893760096 -0.059445714 1.722909087 2.850998949 ## [431] 0.212445383 -0.273505792 2.078226728 0.893508302 0.269106678 ## [436] 2.261841963 2.258135198 1.316722054 1.264343643 -0.384810620 ## [441] 1.351168962 2.293922179 1.339327392 2.451581133 1.935693615 ## [446] 1.006746503 2.467137038 0.445736865 -0.014919700 1.766833068 ## [451] -0.426547315 -0.030113741 -0.204602310 1.523403278 1.843609909 ## [456] 2.688213043 -0.405605509 1.660786762 1.832085173 -0.162075733 ## [461] 0.575922044 1.504100596 2.247513441 1.444986061 1.837619875 ## [466] 1.082012052 2.425921299 1.405493613 1.355826604 2.839994759 ## [471] 1.712590953 1.727529545 2.549590141 3.839554775 0.288793054 ## [476] 1.159722172 2.045162445 0.581732178 0.762829674 0.100900736 ## [481] 0.325646811 0.093657199 -1.076488474 1.753048724 1.059468778 ## [486] -0.078870236 0.179890976 0.947485016 1.721036507 0.901286575 ## [491] -0.104292042 -0.359128870 0.759462222 -0.162999107 -0.497917065 ## [496] 1.231209705 1.838289973 0.498372470 -0.687020170 -0.283289929 ## [501] 1.071095015 0.522139489 1.864358878 1.145525913 0.385120099 ## [506] 0.404453792 1.851996676 1.350178150 0.879637111 0.998311343 ## [511] 1.292010469 -0.579359163 1.556983387 -0.795951641 1.673354980 ## [516] 2.381162920 0.006109894 0.597637445 3.291902579 0.884246068 ## [521] 1.651095843 1.619243794 0.915400191 0.352979695 1.415867298 ## [526] 0.716662121 2.153819472 1.955151831 1.742733252 1.291522990 ## [531] -0.422797661 1.965809126 2.201718200 1.234187512 0.390653216 ## [536] 2.655169051 1.211997070 0.139503941 -0.912600552 2.076408188 ## [541] 0.890933315 2.580546776 1.321979872 -0.618791061 -0.460960113 ## [546] -0.468212571 1.869364886 1.545307170 -0.143476026 0.481803074 ## [551] 1.850970378 3.152900038 1.002608106 2.472027573 1.292799149 ## [556] 1.539812504 2.329204946 1.250873121 2.556816440 1.512000391 ## [561] 1.124931233 -0.181366180 1.137904910 0.971207748 1.744148618 ## [566] 1.020527159 1.313162108 0.685366203 1.316822646 0.795551188 ## [571] 1.109792116 1.203220231 1.257714671 1.001253578 -0.097900387 ## [576] 0.577028013 0.629829649 0.454161395 1.342553624 -0.551491293 ## [581] 0.439950030 1.322610234 1.029174939 1.112434427 -0.237840747 ## [586] 0.964911457 -1.075024895 0.343908509 0.479204981 0.357943680 ## [591] 1.077195532 1.336940691 0.950371572 0.703427208 0.302258852 ## [596] 2.403818162 -1.314174550 0.893944063 -0.636960787 0.718056960 ## [601] 1.643428006 2.582070607 1.448696455 0.588185661 0.115584770 ## [606] 0.541340738 -1.426525534 2.039837611 0.820431897 -1.406734470 ## [611] 2.752582543 -0.700947401 1.882160577 1.671815835 1.160730092 ## [616] 0.375734380 0.814375142 0.689768931 1.990595837 -0.049133398 ## [621] -0.817016751 -0.483594588 0.822108099 0.266641999 1.382434634 ## [626] 1.365397407 1.301364375 1.519338812 0.234263730 0.962418784 ## [631] 0.432376160 -0.372400072 0.973094987 1.602391713 -0.076364622 ## [636] 0.083730734 -1.394521081 0.145561224 1.027769113 -0.318158947 ## [641] 0.761692990 0.499517206 0.259526110 1.058772250 1.547816520 ## [646] 1.058230277 0.692925286 1.463544505 2.263484315 1.550748495 ## [651] 1.254907393 1.190536471 1.614834263 1.724552067 1.390585266 ## [656] 0.515879182 0.390242438 1.605257550 -0.170532968 2.276405217 ## [661] 1.075046776 -0.717926528 2.714909476 2.163302325 0.176588752 ## [666] 3.344914690 1.911256736 1.147336285 0.480086496 2.040685038 ## [671] 1.585167173 1.501519559 1.166226906 0.823778066 0.644044743 ## [676] 0.583254773 2.514066799 0.067666262 2.051058088 0.197676290 ## [681] 1.356276808 2.291200853 0.225289603 0.034506959 1.505697082 ## [686] 1.222883602 2.471808120 1.390770247 0.490847781 1.580632703 ## [691] -0.010950091 1.223212667 0.591436809 2.234460906 2.012419823 ## [696] -0.317137349 1.022585698 2.514167388 1.459988850 0.491714554 ## [701] 1.311319918 0.705884649 1.985723741 1.273886678 0.605957098 ## [706] 1.980833803 1.423708568 2.901300970 -0.504377422 2.146117971 ## [711] 1.742704993 0.743248709 0.581268798 0.182118871 0.690574636 ## [716] 2.210961072 1.381888113 0.805893957 0.211581292 -0.670013572 ## [721] 0.019810146 0.015324122 0.998842469 -0.070025600 1.487460001 ## [726] 1.999806570 0.476380810 2.349202720 1.056708254 0.975569522 ## [731] 0.098695123 0.447585592 0.115517150 2.763328312 0.448067428 ## [736] 0.489279968 0.264338988 1.219528122 1.842558646 2.179144111 ## [741] 0.900780579 2.315888258 1.943961819 1.567443755 0.740123207 ## [746] 0.527328060 1.701850622 1.402535580 -0.036457634 1.248031622 ## [751] -0.093901627 1.382590982 -1.266554022 0.848779108 -0.446145189 ## [756] 0.672662058 1.234650494 1.710291419 1.330775267 1.400682399 ## [761] 0.368502353 1.527917379 0.343613429 0.173334191 0.741967490 ## [766] 0.390585739 0.710332530 -0.322643466 1.726334210 1.469320920 ## [771] 0.796365435 0.830894512 2.245627234 1.187274554 0.162870435 ## [776] 1.920231965 1.700250431 0.559520247 0.958395156 1.167761648 ## [781] 1.027247467 2.684665834 0.603415017 1.818942026 -0.702055356 ## [786] 1.942324867 2.076794292 0.754506068 0.067573139 0.727401476 ## [791] 1.368136220 1.410937830 0.869129605 1.242828940 1.561651646 ## [796] 0.084306632 1.007855328 2.687387593 0.831228992 0.855222904 ## [801] -0.737174659 0.416005151 0.747225694 2.055921708 1.974979005 ## [806] 0.495249523 0.247261661 0.545910230 3.319267270 1.559157570 ## [811] 0.215727807 1.629468133 -1.739773400 1.165485173 1.299341900 ## [816] 1.283674609 0.927702029 1.654443154 2.130987866 1.063830054 ## [821] 1.892117387 1.985391690 1.155592659 0.130535940 1.992025020 ## [826] 1.286658922 -0.213171263 0.535061323 2.544563230 1.557588879 ## [831] 0.207240954 -0.105978359 1.274213049 0.689433927 1.484933551 ## [836] -0.976205986 -0.876703577 1.025546953 1.204769280 1.199345845 ## [841] 1.730123976 -0.272495345 1.247894844 0.903311194 1.007961648 ## [846] 2.566920825 1.736785452 1.035091244 -0.834322236 0.912925317 ## [851] 0.634080838 -0.025985541 -0.043939884 0.552958863 0.691395796 ## [856] 1.780122640 1.737041054 1.624783859 2.341886120 0.050897420 ## [861] 1.460210913 0.761247451 2.115467260 2.823957092 1.216333813 ## [866] -0.596139158 -0.091078265 1.965493009 1.795895794 2.988421753 ## [871] 0.697144258 1.015385362 -0.530490491 0.878168209 1.989284941 ## [876] 2.026204176 0.736870677 2.160520162 1.221989449 0.848204474 ## [881] -0.300238220 1.955435127 0.795104338 0.302098939 0.161020126 ## [886] 1.592821742 0.339416814 1.180758816 -0.147180512 0.044044257 ## [891] 2.385676433 -0.711199392 1.726604257 1.214192250 0.786902364 ## [896] 0.462002201 0.959094764 1.612294762 1.843288010 2.014246631 ## [901] -2.185369617 2.144613608 0.451358517 0.886368840 -1.085496297 ## [906] 0.654052933 1.563278663 0.914821707 3.311886112 0.846984688 ## [911] 1.676379918 2.547531319 -1.119131169 0.967875973 1.447655710 ## [916] -1.310825569 2.347954029 0.322237131 0.023424296 0.368551684 ## [921] 0.276702467 1.582592062 -0.446603903 0.442789049 0.799357466 ## [926] 1.627522315 1.320407446 0.675516950 0.719147936 0.412877428 ## [931] -0.049444659 1.974641633 0.167681178 1.913248361 1.848872148 ## [936] 1.610590603 1.335528070 1.405069140 1.030334912 0.648820997 ## [941] -0.834725407 0.616961062 0.809430891 2.394613505 0.866051917 ## [946] 1.276073526 -1.109726271 2.012570767 0.571947850 2.001173318 ## [951] -0.247735087 0.871918998 1.761059772 2.041566024 0.170523048 ## [956] 0.868746537 1.237102241 2.244467979 0.444272681 0.610901370 ## [961] 1.964576797 1.717628938 -0.837530186 0.984066909 -0.097358641 ## [966] 2.780768738 1.192798036 1.409338524 1.700005830 2.150900723 ## [971] 2.237624487 -0.728382501 -1.054709168 -0.078528241 0.336122367 ## [976] -0.112095122 0.539874303 0.589362239 0.976124353 1.752779848 ## [981] 1.452780600 1.241383416 2.645474355 0.364330121 2.361239821 ## [986] 1.152334096 0.999806790 2.369419893 2.429891058 0.527585727 ## [991] -0.605926725 0.176062990 -0.568796591 0.919782846 2.657762495 ## [996] 2.680944548 0.867796209 0.707596313 -0.045052977 1.846242596 ## ## [[2]] ## [1] 2.543247724 0.834072001 0.750577848 -0.725372054 4.288489341 ## [6] 1.977509151 1.187598862 4.963017751 -0.314150644 1.576310020 ## [11] 4.283295252 3.680683836 3.726483995 1.551142781 5.191555634 ## [16] 4.592950991 -0.105059555 0.979138750 2.013211368 1.411823724 ## [21] 3.876635799 -0.996068727 3.603250057 1.353858373 1.832477634 ## [26] -3.342983128 5.389032378 1.012140456 -0.571260536 2.887389763 ## [31] 2.720239237 4.400573827 2.787765078 -1.790444378 3.153796185 ## [36] 1.245138683 0.473983726 2.593561139 3.232515883 5.371587052 ## [41] 3.891587420 1.495200020 1.742332166 4.531708648 2.485920587 ## [46] 3.231673896 -4.286691166 2.682846614 0.394196306 0.909281453 ## [51] 5.481808470 2.977150938 2.766145849 0.672559702 2.147136489 ## [56] 2.743771678 1.759025657 3.704190744 2.688550670 1.564871492 ## [61] 2.846761419 -0.587295321 3.028396212 3.704350145 2.876018441 ## [66] 2.385980814 2.927896014 5.262130787 4.373010304 5.842146936 ## [71] 2.237365228 -0.609274461 3.353440153 1.756323183 4.832579400 ## [76] -0.667674260 2.315445300 4.275994692 0.886012123 2.965088116 ## [81] 1.617372889 1.168602626 4.746012291 3.780685336 1.716193728 ## [86] 2.940595814 2.160334655 3.570680996 1.711623016 -1.830152585 ## [91] 4.494105152 0.961597344 -0.953502598 1.842278222 2.902119110 ## [96] -2.424579436 3.093325094 3.502153776 -1.082268249 3.551228587 ## [101] -0.186006863 1.064930162 1.269394119 2.673691437 -0.623741959 ## [106] 3.021308971 3.335249266 -1.579018784 2.229280614 2.448193955 ## [111] -0.442256328 0.808104681 3.478615852 0.862727376 2.348848780 ## [116] -1.244671437 -0.728328153 -0.337893703 0.532650528 -0.547644981 ## [121] 1.823488720 6.645680586 1.323336251 1.698701319 4.787797677 ## [126] 0.142063510 3.370494092 2.269685003 -1.101402768 -1.590675329 ## [131] 3.862948430 1.498289569 4.638070212 1.646898500 1.913457202 ## [136] -0.659764620 0.569616203 4.006466066 1.941632876 3.961556838 ## [141] 1.837023450 4.919146300 3.276351944 0.266645852 3.546220585 ## [146] 4.956054789 5.735735586 0.696576146 3.680394000 0.159257132 ## [151] 2.607132973 -3.279019713 1.518249585 1.205449224 2.709472108 ## [156] 2.501007760 2.328254982 1.008287802 4.511530814 1.231021209 ## [161] 3.029229142 0.435093563 3.901656525 1.006293538 -0.039241974 ## [166] 1.660356066 -0.445624485 1.961834301 2.005379157 1.060648045 ## [171] 0.291886495 -1.459427025 -0.118660510 3.607807722 2.905412132 ## [176] 1.870902643 1.886840622 1.209114316 -0.008542019 -1.048581676 ## [181] 1.750936961 4.497552020 3.270583629 -1.940201124 0.876936351 ## [186] 3.042983194 2.810566082 3.667562491 1.992767241 5.294997453 ## [191] 2.184001146 3.321166079 1.671225199 3.015712491 3.932118919 ## [196] 4.403508294 1.603160485 -0.551398583 0.063083551 3.220161935 ## [201] 0.385792486 1.862327467 -4.117876614 5.217124860 1.228873300 ## [206] 1.267523943 3.647492098 -0.930164567 0.298897728 2.602393211 ## [211] 0.129466639 2.620168620 5.572606640 2.128416621 2.820423496 ## [216] 0.295455924 2.870986457 4.634878122 -2.304326487 2.370872970 ## [221] 3.697701435 3.028497618 3.741638958 -1.695829394 -0.720450162 ## [226] 2.804225528 2.385607731 2.140360741 2.027461071 3.390835856 ## [231] 2.759579966 2.120177395 1.797448859 2.853322123 -0.963454126 ## [236] 2.685544383 3.087545928 1.973121029 2.025609145 0.558158522 ## [241] 6.166273161 -0.906126691 0.727051470 2.014292303 0.567931818 ## [246] 2.020883013 0.889051659 -0.674477527 -0.388241251 2.961489195 ## [251] 3.249684211 -3.038462445 2.269557314 2.406213086 2.561131320 ## [256] 1.442742336 3.055412770 2.427266805 1.244072467 -0.672026878 ## [261] 4.057235371 0.709798863 2.557846796 1.410124860 2.286224129 ## [266] 2.168622707 3.202241202 3.750628311 1.641605734 1.033124712 ## [271] 2.900025167 2.721586699 3.231090446 4.809154575 1.298670474 ## [276] 2.623116705 -2.430056308 3.391112518 0.710308098 0.578335951 ## [281] 2.268382485 2.539566058 3.406138711 -0.431528900 4.373351569 ## [286] 3.399393614 0.687036087 1.446908155 4.895402462 0.217427537 ## [291] 1.816010738 2.927124759 -3.005344438 3.185141194 3.308949316 ## [296] 0.542865696 0.484084641 0.209438218 2.532275980 1.285872896 ## [301] 2.032720079 2.676943587 0.437954977 -0.480440309 3.753483261 ## [306] 2.175722399 2.284140684 1.922709318 0.535188968 -2.065583880 ## [311] 2.792525511 1.097182736 1.578790219 2.198145038 4.970317884 ## [316] 2.175011157 4.867772995 1.474090003 1.256678713 -1.050957738 ## [321] -0.974419758 -1.810774419 1.150031182 1.999195195 2.519099869 ## [326] 5.754306717 2.401585951 0.982061720 1.797389492 3.822022515 ## [331] 4.125829791 0.480579249 4.100271627 -0.046837543 1.304546555 ## [336] -0.666976081 -3.310568487 2.377267382 -0.422659444 2.540539636 ## [341] 1.693077297 -0.359022527 2.833887096 4.423752884 4.140108942 ## [346] 0.896231965 -1.877681845 0.363192836 1.797767626 1.516708668 ## [351] 0.526554348 -0.486592507 5.375771052 5.078082775 0.196003145 ## [356] 1.566224066 5.019020583 1.449177601 0.790617719 -1.677137381 ## [361] 3.506332179 1.540347299 1.343950771 -0.002535337 2.854494237 ## [366] -0.353094361 2.512755048 3.480804077 4.010133670 -1.668345099 ## [371] 0.182631283 1.859494328 3.134286124 1.741153641 5.662336425 ## [376] 6.920014901 7.325275302 4.108358096 -1.409542582 0.143995828 ## [381] 0.469421101 -1.735290979 2.939796884 2.750353969 0.361450432 ## [386] 2.798045316 1.595702242 3.323170717 1.845362985 -0.223567059 ## [391] 4.612506848 0.305031680 5.412801925 0.052934132 1.937868869 ## [396] 0.590210337 2.660153455 0.952555545 -0.090461031 0.787689069 ## [401] 3.597497161 2.074895343 3.088875422 2.039294766 4.769661968 ## [406] 4.350710999 2.859260979 4.772839375 4.026866150 2.388287394 ## [411] 3.727331351 -0.842032482 1.410029629 2.531727242 2.813192874 ## [416] 1.200053280 2.902598609 0.217356266 2.528278115 3.031916335 ## [421] 2.626819833 3.899233941 2.388271889 3.789498156 2.587706625 ## [426] 3.338074418 0.506275663 3.682199359 -0.110409479 -0.418157916 ## [431] 3.381900729 3.522474942 3.171695870 3.434294445 2.380600491 ## [436] 3.612108653 2.067787892 2.551132146 6.454773601 0.328035786 ## [441] 4.577302984 1.809444660 -0.921015241 3.456282315 2.129443252 ## [446] 0.476115318 1.127214650 3.405492872 4.042595164 1.310401673 ## [451] 2.469149136 -0.687081714 0.849280254 2.079501645 1.264606116 ## [456] 4.909155597 2.699765659 5.402149226 0.830425836 6.929336836 ## [461] 0.882115140 1.691975209 1.009917117 2.259064196 3.312547700 ## [466] -1.620971376 3.287291314 3.204561711 1.221381529 -0.487727063 ## [471] -0.501742067 0.067967122 1.710147144 2.821044940 3.288949291 ## [476] 1.050206495 1.081579665 2.776174550 -0.514502555 3.629221693 ## [481] 2.984374845 -1.103247767 2.102595599 2.084152595 1.973120230 ## [486] 1.687702637 0.807952177 -0.327244152 5.028808161 1.112289726 ## [491] 0.948869347 1.520770284 3.947221243 1.641987078 1.504703684 ## [496] 2.484693723 0.887320453 1.123497439 0.823768110 6.472406095 ## [501] 0.977043124 -1.495453217 1.291963374 3.456093804 2.303214075 ## [506] 0.115803644 2.356783225 1.333833334 1.466543264 3.323215023 ## [511] 2.006736210 -0.626379614 -1.371813697 -0.835512759 -2.414155914 ## [516] 2.883486497 -0.341206744 1.500418213 -2.147691471 6.184342399 ## [521] -2.163703600 -0.267784256 2.998908978 2.258285784 -2.591385664 ## [526] 2.105368208 -0.198882332 0.836510810 1.005490877 2.869459936 ## [531] 4.423842078 1.318042760 3.919137555 3.879653406 1.735810415 ## [536] 2.053231892 6.799638123 2.799070426 1.780322633 -0.705208375 ## [541] 0.026297713 2.859602492 4.291493150 2.033232081 4.806298598 ## [546] 3.542742397 5.079581433 3.077268748 2.738366414 3.414632853 ## [551] 3.872024263 3.054153689 -2.032333343 1.478722145 3.356783523 ## [556] -1.387532105 2.739326149 2.815685789 2.577173417 0.082489641 ## [561] 3.621388289 1.047260139 0.747228231 7.493991619 2.679599307 ## [566] -2.007508518 3.628905223 1.017113637 -1.950108074 -0.532718274 ## [571] 2.311028950 1.772417885 1.713356610 4.024193455 4.062993491 ## [576] 4.630086599 0.616265612 0.489568508 4.560953069 0.411628907 ## [581] 2.745987832 -3.884363924 1.779223566 2.636149852 2.100344724 ## [586] 2.674251448 1.885723477 -0.445363554 -0.395845808 1.787375558 ## [591] 4.179941731 -1.870330854 3.349273311 -1.426272672 2.150994931 ## [596] 1.961335834 2.135898374 1.884905625 3.460373232 6.990912257 ## [601] 5.488450173 2.121929589 0.485151090 1.943040420 0.242552808 ## [606] 4.819308437 1.139511411 2.721622210 3.090849493 2.876423819 ## [611] 2.206990306 0.672974227 0.920358133 1.205905780 3.328342213 ## [616] -0.137553822 3.236910452 3.629036755 2.980090955 3.468234252 ## [621] 4.596319144 2.376378596 0.246061389 0.099099518 0.839137422 ## [626] 1.113265390 0.631230879 -1.322045835 3.775536660 1.540737778 ## [631] 1.803197552 1.877262411 2.503019739 -2.428841307 0.320924783 ## [636] 1.454945526 0.971247818 0.250630920 2.505024596 -0.812123724 ## [641] 2.296656640 0.025350537 2.704042924 1.326257390 3.475055219 ## [646] -1.193126422 -0.074277033 2.872582150 4.439193653 0.367387729 ## [651] 2.529196141 3.317462151 0.769774830 3.992741344 1.708427131 ## [656] 1.170443837 -3.011038466 1.161540809 -0.433376408 1.087911018 ## [661] -1.866734645 1.859823457 0.530135797 2.735250496 -0.965762949 ## [666] 3.418136075 3.830421866 -0.181935907 3.029956487 3.085962276 ## [671] 3.159582161 0.616400603 2.259037695 3.330807587 2.218514400 ## [676] -0.515928452 7.032423777 0.558114728 -1.338875531 4.277395323 ## [681] 1.346677614 1.562873336 -2.148303370 3.591154719 0.695761442 ## [686] -0.168719536 -0.089646756 2.165664690 0.639602437 5.269545700 ## [691] 0.488166598 3.831155057 -1.048414580 3.940995603 4.445347593 ## [696] 2.957465235 -1.289572298 3.666670702 3.644722287 2.343000839 ## [701] 7.561324097 0.695459078 1.683251486 3.860705907 2.760762679 ## [706] 3.771959218 0.730208436 1.862823963 -1.877163274 3.265369877 ## [711] 0.696982787 1.022193446 2.762023831 2.734847554 2.570716918 ## [716] 0.184688134 3.022591096 1.620944435 1.404357347 1.370856862 ## [721] 3.853012338 5.091046850 2.576935137 1.397873693 0.718144926 ## [726] 3.665246264 5.213149524 0.795881770 2.072219596 1.861260434 ## [731] 2.585220869 -0.117691297 3.528221629 1.469551498 -2.495651091 ## [736] 4.165891198 4.354868156 1.108771059 0.836592046 -2.510930231 ## [741] 0.867428881 6.928619529 4.541825658 2.482979844 -1.371864354 ## [746] 0.226822822 5.430016879 0.171262249 1.469837710 3.865235020 ## [751] 4.059092787 0.572519695 1.465281518 2.488369542 1.633758547 ## [756] 3.735409772 1.623132844 0.922747849 -0.291090785 4.805971585 ## [761] 2.585120678 6.643253069 -1.541684286 2.960555658 2.986574098 ## [766] 0.905198878 1.463726524 1.803826932 1.531530860 5.026386907 ## [771] 2.826223661 4.265907577 3.291000075 2.363000347 3.429339992 ## [776] 1.316060326 0.050289265 3.981913924 0.164000431 -0.087231967 ## [781] -0.700533881 -0.682638982 3.108513657 2.248896773 4.370822741 ## [786] -0.518750138 3.296922958 3.449046408 1.692051953 1.969298916 ## [791] -0.096389186 2.465125293 2.715045647 2.145791230 0.493953210 ## [796] 0.853929148 2.328788639 1.178996844 -0.898666008 5.106554365 ## [801] 1.277505794 -3.589116477 5.089195957 4.732697722 1.203731871 ## [806] 2.634271574 0.938266240 1.851430241 2.192174921 4.022189593 ## [811] 1.764661418 -0.188200305 1.430729357 -1.115935102 -1.997034497 ## [816] 1.237643343 4.565627251 -1.883770906 -1.774164741 2.852892260 ## [821] -0.800598538 3.565821930 0.364368755 1.196284948 3.269980798 ## [826] 2.194429029 -0.795489739 1.249582666 0.451730453 4.059689464 ## [831] 0.850406362 2.602804074 3.019527958 4.014120111 -1.552748272 ## [836] 2.418776866 1.824635896 1.304806343 3.631409953 2.470579349 ## [841] 4.764632067 5.454973279 1.480871946 2.249226232 1.497324490 ## [846] 2.189462464 0.525026212 -1.028789033 0.319302442 3.865079596 ## [851] 5.024592999 1.859832159 2.345478592 2.092971114 3.918930611 ## [856] -0.715889971 3.666808401 5.477862967 -0.765948516 3.313876573 ## [861] 1.387208324 4.783926312 -0.900362708 -0.526859668 0.794181812 ## [866] 1.456902412 0.900477549 -0.817521754 2.290573214 1.157765906 ## [871] -1.392643007 1.235040256 -3.949213081 -1.071081332 3.197045232 ## [876] 2.315168505 4.508702609 4.705963006 5.509191620 1.408188436 ## [881] 1.745444143 0.985238976 1.710028461 1.033405228 3.436651810 ## [886] 5.993820721 3.572056112 2.678962640 4.235268252 1.969899909 ## [891] 5.233616358 0.677125303 1.171559588 2.654816247 1.757700774 ## [896] 2.889363301 1.852123138 1.306828226 0.852483290 0.326701984 ## [901] 0.990244273 -2.017557923 5.012084550 -0.477647877 1.749127058 ## [906] 3.312612774 2.305235593 2.527981109 -0.306183307 2.933943223 ## [911] -1.468569487 3.290971300 3.933190763 3.027265952 1.412932420 ## [916] 1.914559274 4.437560628 1.786700488 -0.367700579 4.163670424 ## [921] 2.901905879 0.206112798 4.975126972 2.767384045 2.953564445 ## [926] 2.140318700 0.094428960 0.815419490 1.469064229 1.160618440 ## [931] -0.822716469 2.014137891 2.588598802 4.291755764 -2.366097686 ## [936] -0.761780180 3.310372359 4.912255992 -1.571954534 2.737159143 ## [941] 3.568211886 1.484847059 2.898027940 0.521151186 1.006506258 ## [946] 1.622172302 2.296013398 3.280757498 2.222306077 3.419871099 ## [951] 4.254645542 3.593416875 0.190274480 4.171385438 3.407092508 ## [956] 1.172873340 1.263739163 0.991561712 1.144378113 3.219994823 ## [961] 1.523065109 1.831252515 -0.112110283 4.396326199 1.917876793 ## [966] -0.612592515 1.879918355 2.687437541 4.575335173 2.595553581 ## [971] 3.830399377 2.436856278 1.802995893 1.115539593 3.060695082 ## [976] 0.556124206 0.216939984 -1.376052147 2.769601134 1.369991596 ## [981] -0.120704376 4.053323669 -0.600098283 5.076975323 3.276003786 ## [986] 2.598206781 3.847186938 4.746034972 1.966290022 -1.245028377 ## [991] -0.624825696 0.798929262 2.931671896 3.072661813 2.524696484 ## [996] 2.549163385 -0.594017764 -0.315552204 -0.006788059 -1.357367480 ## ## [[3]] ## [1] 4.770633433 4.861336571 2.219472546 9.391745105 3.560659876 ## [6] 5.121585566 5.300834398 1.672140412 4.324291631 2.039136196 ## [11] -2.242135636 10.150337110 3.856183892 5.620722712 0.692457812 ## [16] 4.213377674 5.789098842 -1.640891807 5.087984858 2.668521788 ## [21] 2.879947428 -0.605400715 -1.580327811 0.893275358 2.708798931 ## [26] 2.255097567 7.864176386 -1.738623121 0.138792671 1.555873988 ## [31] 8.290777330 5.369314096 6.377835416 4.144448349 3.440355169 ## [36] -1.033473986 2.084148289 4.431012315 2.819596225 5.343508894 ## [41] 5.673274307 2.477634500 7.671427152 2.843062967 0.209759392 ## [46] 6.246350988 2.376213835 1.516080915 5.133599397 3.215929047 ## [51] 2.379909000 2.801801536 -1.511154129 1.449660993 2.541938778 ## [56] 0.854449239 5.935834852 6.159860586 3.244995842 -0.705464645 ## [61] -0.354576014 7.955153768 3.992631277 -1.443549144 3.582334855 ## [66] -1.839887065 5.434567432 -0.312735033 -0.114877999 -3.309644954 ## [71] -1.141520245 1.837213179 3.485586682 7.105621030 3.749220262 ## [76] -1.292589955 0.916664293 8.211774167 6.718829489 5.565012341 ## [81] 4.534307253 -0.143547121 -1.650962399 3.242561502 0.729506875 ## [86] 3.152453905 4.325611096 5.226791479 2.161678721 3.954410067 ## [91] 2.914462978 7.711707662 4.359876068 8.115661262 7.986491177 ## [96] 2.247646720 -0.034632818 3.723253789 5.237546410 3.344754647 ## [101] -2.021436610 7.159663933 5.066928103 7.338593689 8.605029491 ## [106] 2.180701223 5.556836066 -1.995911041 5.148948544 3.128371594 ## [111] -0.603520937 0.716426264 7.276658646 -0.269603921 0.043725960 ## [116] 10.471000497 0.039338867 9.693101800 0.262163800 4.159885312 ## [121] 2.473497868 0.168742478 4.887564407 -1.654138744 -4.513306697 ## [126] 3.217561793 0.566439130 0.726605804 4.963636083 4.329444192 ## [131] 1.612369870 0.821620314 2.270888191 3.651237111 5.658444921 ## [136] 5.976761993 -0.678945498 7.292358413 5.250221486 0.303990898 ## [141] 2.193733133 3.200625221 -0.895724968 4.202314071 5.082756282 ## [146] 1.734029408 -2.780703535 4.417113597 4.241466591 3.031672022 ## [151] 3.090119224 4.224320407 3.861250452 7.502036004 4.266983531 ## [156] 5.493157275 6.361227307 2.951224236 -0.369428343 6.690962424 ## [161] 1.415269487 1.478176728 3.316348528 6.108988383 -2.416458918 ## [166] 1.019656978 3.263097727 -1.892449873 5.106231258 4.211977734 ## [171] 1.727996422 1.054852640 3.019820128 0.466549161 0.594162567 ## [176] 3.333803512 1.850893045 4.878702146 -0.055267051 -5.402944770 ## [181] 1.944865796 10.021307986 3.058624185 5.194377793 -3.488497218 ## [186] 0.984408674 7.050375641 5.088954670 1.427322696 -2.112085603 ## [191] 4.761094849 0.061190865 2.096533185 0.339298898 7.196757991 ## [196] 8.971013929 5.034618677 0.410327576 3.578663512 3.012016727 ## [201] 3.764855357 8.079969016 2.850043792 5.379835489 0.694063064 ## [206] 1.664719263 -0.872813179 4.279718623 1.890534543 5.324976331 ## [211] 9.346948995 0.514797773 0.240630750 3.421246103 5.395529429 ## [216] -0.542868076 2.827918278 8.223721933 -1.018326228 7.698344165 ## [221] 6.954646452 8.454231520 7.686081251 -0.948733819 -0.700080937 ## [226] -1.292251702 -1.606194412 0.817841370 -1.124427438 4.072181102 ## [231] 1.250039610 1.232339623 2.085523751 7.643878037 -2.728511326 ## [236] 2.825155785 3.074892746 1.939225742 2.988588126 2.271261638 ## [241] 2.074751258 0.891577898 5.017634577 4.527434911 5.052126004 ## [246] -2.184706703 0.012096756 5.529013409 4.682435320 2.167452350 ## [251] 2.036745501 1.889205849 1.442904878 1.046816009 5.884644777 ## [256] 3.149861091 2.220613145 3.457524008 4.225889688 7.705292699 ## [261] 4.719853240 3.216362735 5.199458132 5.617816211 3.060210383 ## [266] 4.397734320 -0.593682597 4.474984648 6.322324687 2.580314663 ## [271] 3.827713917 4.870040995 -0.078911696 7.947816594 8.479587080 ## [276] -0.294196040 2.960574576 -3.880352823 2.583528677 4.086301800 ## [281] 2.825913684 2.300368907 2.637218281 3.766568238 -1.111898503 ## [286] 4.220520113 8.462941079 1.556435554 6.436608125 1.092375175 ## [291] 7.605831646 -0.179478798 1.711143449 -3.866805962 0.976054279 ## [296] 2.808272764 7.148597401 5.558165230 1.744848589 -1.260989135 ## [301] -0.624774777 3.655582798 -1.242484349 5.328470861 4.346219040 ## [306] 5.927493350 7.056869841 -4.158335936 0.722692506 7.758324658 ## [311] -1.767482184 -2.815156551 5.252565907 -0.858261865 2.762877209 ## [316] 1.814250316 4.293692308 -0.891525132 5.562743402 2.971234699 ## [321] -2.706754911 1.223797942 1.572773007 -2.615848473 8.497864125 ## [326] 3.168939287 -1.848600402 0.642581425 2.857767072 9.215081128 ## [331] 5.755394615 -0.788017282 8.290682727 1.727810762 4.750887655 ## [336] -1.886005046 9.455947519 0.517242687 9.061453887 -1.439684913 ## [341] 0.189278343 -4.467922102 3.127293598 2.276699223 3.091332996 ## [346] -1.662555951 4.515144060 2.105188688 1.899413954 5.122110636 ## [351] 4.944998958 2.138361752 4.434998742 0.867846266 3.008787926 ## [356] 1.664817591 -1.686220418 4.003439933 2.262610045 4.861685408 ## [361] 1.479978844 1.635511945 3.363211971 1.293935247 2.802389785 ## [366] 3.456768156 4.929994141 2.194099843 -3.188423397 3.375792574 ## [371] 1.313553911 2.138069563 -5.818109683 2.393286062 5.343859310 ## [376] 5.586247713 3.174838287 6.237619430 3.940753548 0.127946844 ## [381] 5.702812353 1.275232152 6.986025819 5.534526053 1.276442956 ## [386] 5.992855084 5.369876107 5.230780431 2.056138795 1.039861265 ## [391] 5.195441461 2.891562430 3.290734020 4.103097162 5.330990436 ## [396] 6.414873660 6.056909546 2.490886193 1.023340681 2.139116782 ## [401] 4.402374229 4.492931169 3.240429688 1.113310998 0.950709051 ## [406] 5.569241111 -0.225134783 -1.085404184 6.966249604 1.386541090 ## [411] 2.550899989 1.757205477 1.449671018 -1.129684357 2.449084298 ## [416] 7.533558538 4.425668969 1.907349677 2.021900065 2.113102230 ## [421] 3.679482803 3.856448334 -0.310690772 -0.101908026 -3.092911428 ## [426] -3.086812084 -1.156079835 0.364997473 2.175082952 -0.294374188 ## [431] 2.759084699 -2.268135871 1.547693133 2.434883337 6.697519002 ## [436] 6.551974850 5.363661821 6.578420373 4.070140838 -0.575147803 ## [441] 2.450519857 6.214582858 3.385538883 2.586886549 3.471186773 ## [446] 3.045166829 2.345529724 3.525511931 0.617842570 1.375102331 ## [451] 1.202386706 4.679492929 1.638026882 6.365661774 3.080441387 ## [456] 0.823153976 1.125211356 7.420331021 2.947757344 4.722175980 ## [461] -0.780009489 -1.233668912 2.997708267 0.655390332 4.558776239 ## [466] 0.206336062 3.602698448 4.464915339 1.511633663 2.763500090 ## [471] 8.563461531 -1.881214904 -2.094787323 5.340372991 2.714173089 ## [476] 0.469189922 2.333409689 7.358605617 7.774080554 2.150089123 ## [481] 3.695213112 -0.395019049 4.249590627 -1.937069755 3.940297191 ## [486] 5.093710309 2.448574188 -0.253185533 3.525657004 1.331381353 ## [491] 5.038729655 6.129123927 4.267988870 7.142935195 2.286150838 ## [496] -0.478291343 5.881364360 5.441023117 6.187010162 2.924514099 ## [501] 1.870797930 -4.251539449 6.685047395 3.904792633 0.463490293 ## [506] 1.308154550 6.170454979 7.751599182 1.662494044 4.815671230 ## [511] 6.080560788 5.921215520 2.329353248 -0.645078492 5.677775820 ## [516] 5.663213487 3.691661771 2.435176430 0.327792356 4.516164738 ## [521] 1.341882931 -1.470258412 -0.106968961 4.866519851 2.083376473 ## [526] 2.452875748 6.912120474 5.103577753 8.426729174 0.871973407 ## [531] 4.462231150 4.257209072 2.467274495 3.372848268 2.795012800 ## [536] 1.609118958 -2.489549423 -0.463734368 3.760018463 3.777228460 ## [541] 5.864646014 -1.887079264 3.981271044 4.541163552 2.758376216 ## [546] 2.058024844 5.080923447 3.744441529 4.877858358 2.018008618 ## [551] 3.149707821 2.996155619 0.721406019 7.104185578 6.357975355 ## [556] 5.359737677 4.382848543 0.586672652 6.034848327 -1.265560881 ## [561] 1.612647390 1.963691883 -1.572046748 2.258244312 4.729950161 ## [566] 0.605205668 -3.719215978 7.411604991 2.707705137 1.970495720 ## [571] -1.577915241 4.987180406 4.481303158 1.502005177 -1.939867514 ## [576] 4.746832907 4.749079663 4.484259009 0.755275003 3.710577947 ## [581] -0.701194608 5.438610083 4.389791608 8.170299759 1.152031012 ## [586] -0.477936096 2.203112518 1.503878801 3.799036995 0.396917398 ## [591] 4.203773768 5.601950068 0.869196448 3.690785379 1.685289663 ## [596] 1.797270875 0.329361379 -0.952154877 8.249395563 4.377145974 ## [601] 2.083239892 5.774970807 -0.489724420 3.524323749 6.442280889 ## [606] 7.522791698 5.031468747 4.678454721 3.362561016 5.552125747 ## [611] 3.950655282 1.722488387 3.590148274 5.007158588 1.788989650 ## [616] 6.125309739 8.033707610 -1.744612781 5.200706714 -1.370297305 ## [621] 0.049344758 2.991055018 1.962082962 9.032583955 4.152594186 ## [626] 6.826355766 -1.452029252 -3.478257042 2.429488421 1.560923822 ## [631] 4.587933001 4.124671980 2.524336820 3.790919082 6.029196547 ## [636] 2.906213941 9.059412494 7.853089548 3.509653120 3.367251828 ## [641] 4.853775625 3.667875718 3.200083417 5.363857988 1.255665665 ## [646] 4.633594668 5.989677795 7.008627995 -0.654268856 -0.131535971 ## [651] -1.363680182 -1.065555097 1.032637989 3.644541116 3.519777596 ## [656] 1.681529944 1.652542013 2.955482553 -2.932433972 -1.393077589 ## [661] 1.865277007 5.068908791 1.943180672 5.136798261 5.534685607 ## [666] 3.583095833 2.737993190 4.770522141 -1.595594259 5.324064943 ## [671] 3.875238437 0.938354485 1.286532326 0.918954398 -3.583758014 ## [676] -0.115774947 5.374227537 5.158893495 2.236217290 -1.023189171 ## [681] 4.665878929 3.039530690 0.120402378 5.644432237 3.391013755 ## [686] 4.645450348 1.583896559 5.881696792 1.413359720 -1.864375209 ## [691] -1.526438889 1.353777655 5.594041550 3.366703031 -0.563547725 ## [696] 8.532454754 3.558699826 -3.638061353 2.341642023 10.188619055 ## [701] 9.217806453 -2.011807411 7.042253086 0.697431782 -3.525489171 ## [706] 3.269286356 4.205346572 -4.165578157 1.929394371 -2.726180606 ## [711] 1.263189053 3.265762802 3.652648894 10.009950433 0.286632562 ## [716] 3.372803047 4.709452167 4.675230678 7.017326814 2.915017534 ## [721] 1.145710061 -0.838218039 5.554691314 4.712752647 3.944100395 ## [726] 3.819340350 -0.621896219 6.247905171 7.295679269 4.374069760 ## [731] 7.664282961 8.289670075 7.171077847 3.887148623 5.804460035 ## [736] -0.320628121 4.201951633 0.088459528 2.404545046 5.273147534 ## [741] 0.486994866 4.771759217 2.349600600 3.625058349 -0.630094116 ## [746] 4.734310233 2.589344035 3.522610382 0.338738431 1.796314790 ## [751] 8.091283106 6.830544938 5.879302494 3.095980694 5.063318390 ## [756] 3.517281903 5.607301580 1.107256696 1.296384404 5.934081728 ## [761] 5.525677221 5.463111056 4.974629310 7.158979275 3.619924747 ## [766] 4.088569729 3.155845106 3.547302163 6.387165214 1.397158496 ## [771] 8.275160255 -1.412332783 5.172866997 5.353390537 1.350560568 ## [776] 2.520376797 3.522005379 -2.342696999 3.311315357 7.710232119 ## [781] -2.182751153 7.307233504 3.904516955 4.810800436 -0.601039668 ## [786] 0.892590037 2.233511307 7.562517172 4.736444168 3.946183590 ## [791] 1.711142172 9.448369984 3.323252398 4.158068215 5.239491412 ## [796] 6.069589430 -0.211377328 6.875372882 4.311294306 3.769586564 ## [801] 0.035483566 3.718128347 1.866415042 2.677535938 7.187900762 ## [806] 2.142789894 1.530628912 5.617373865 4.121264013 4.076821452 ## [811] 3.434181056 0.618707220 5.613053648 0.620442877 0.476268491 ## [816] 4.935601173 9.154368856 3.222576528 4.157674786 3.344765375 ## [821] 11.486728127 0.952531019 6.279861603 4.206352652 5.575123400 ## [826] 7.353694519 7.584077700 1.860925872 0.144558668 0.446132790 ## [831] 6.469111866 2.948312115 1.720566592 4.035092399 -2.723442962 ## [836] -1.424101072 0.210589170 8.651567829 0.267037061 3.901078974 ## [841] -0.968636311 0.528224293 4.383011221 1.582959167 9.069946959 ## [846] -3.278457977 4.662376990 3.758360126 0.636582598 4.354670166 ## [851] 2.649161245 -0.448706603 9.729535722 -3.068397349 4.169904551 ## [856] 5.452563743 6.753863646 2.535835336 10.139477034 2.003444279 ## [861] 9.886636348 0.325900046 4.618350802 4.510673905 0.040024332 ## [866] 1.947963080 -1.724051427 5.939525765 4.845038783 5.010641666 ## [871] -1.077280360 2.524677094 0.828921126 4.004239824 7.307274897 ## [876] 2.183300681 7.156114769 0.982497888 0.543589871 5.077933929 ## [881] 0.136142523 0.795580782 2.284430503 1.208559157 5.784963919 ## [886] 4.749633970 6.797782664 2.644929351 3.817419604 1.156932787 ## [891] 3.665825110 -2.052397364 2.233398647 4.638046542 1.566556254 ## [896] -0.903567461 9.990986052 11.392448375 2.066825968 3.560597903 ## [901] 6.101733218 0.181960948 4.013962069 2.156547110 3.995117464 ## [906] -2.316928831 -0.126884560 5.033162619 -1.667236104 4.605298215 ## [911] -1.407528412 -5.302415264 -2.387774156 6.964025325 3.342477408 ## [916] -0.098702943 4.774434864 4.157350471 7.011975719 -0.206333262 ## [921] -2.186507596 1.907630441 -0.452044691 2.004716234 6.055969351 ## [926] 1.489564392 4.228004856 -0.265731304 5.289348077 4.060625598 ## [931] -0.043740296 7.339592421 3.404153848 1.971570463 5.836084308 ## [936] 8.749538768 -0.430291357 -3.063408063 3.597918903 4.454731515 ## [941] 5.461015847 6.060110568 2.659439710 3.236747784 -1.257530476 ## [946] 1.422480302 8.606765030 1.935895456 5.723897800 5.249155007 ## [951] 1.303064752 1.599316166 2.248610317 -1.482758335 -1.358623408 ## [956] -3.276117249 0.009992666 -2.843244293 0.410060812 4.174332285 ## [961] 1.234158965 -0.504713145 0.131608892 4.593462470 2.239769792 ## [966] 6.911107072 3.408456484 12.330892364 0.586223689 1.423143955 ## [971] 3.731818129 3.495500434 2.076295975 -1.311223906 5.817679308 ## [976] 7.784068443 6.215319207 0.441996566 1.857575293 8.264305109 ## [981] 4.997861327 2.148630993 3.669219375 2.344090092 4.421057373 ## [986] 0.695393949 4.379861951 8.408021872 6.246272755 -1.320299406 ## [991] 3.203401361 0.861490274 1.004698188 3.835438187 4.602761495 ## [996] 8.873381417 3.308054603 8.491091736 6.830780867 -0.445396822 ## ## [[4]] ## [1] 2.73682808 6.43471496 1.28628689 4.07880749 -1.60383703 ## [6] -1.86571544 12.77478079 10.24369679 5.19355107 7.49073645 ## [11] 6.59876320 6.87638404 1.90426216 5.36518146 1.12162697 ## [16] 3.63525762 9.03676718 4.82076306 12.09256413 4.91609458 ## [21] 3.94526975 -5.26870669 6.36131523 9.46488411 3.88077149 ## [26] 4.37868717 2.87856927 12.13947359 7.91488305 11.58307074 ## [31] 1.63873119 0.23201996 7.18072359 2.36596845 0.43419719 ## [36] 8.21178049 4.88990568 -1.28423190 3.82237941 -2.14307805 ## [41] 7.52224026 3.89295666 2.54608684 3.90146541 1.01970182 ## [46] 0.21004148 2.80153123 0.71140114 6.24370588 5.21396395 ## [51] 6.70604895 2.88239510 3.94361738 8.66325618 -4.19001595 ## [56] -0.53819240 -1.11125715 4.20688165 -2.65771313 4.24374456 ## [61] -2.61710845 5.22631864 8.30519888 -5.68331892 1.77901230 ## [66] 1.75054585 -1.83970237 1.34675910 1.89530042 7.95528644 ## [71] -2.47115665 0.59403361 10.91688646 4.71618004 8.04706531 ## [76] -2.19156929 1.12721809 4.67880179 0.78698471 6.28364456 ## [81] 2.63293559 0.65822287 0.87768476 4.12925383 4.42065706 ## [86] 4.53399253 4.43295734 0.67534707 7.52934349 9.56437317 ## [91] -0.38587058 7.89656709 9.07317354 9.23969234 9.25732863 ## [96] 1.53920944 0.13145249 -1.91362428 9.34150895 5.14812742 ## [101] 13.43275585 6.15066007 1.37392408 5.51206477 1.54876922 ## [106] 9.00562542 8.40255570 6.27732461 -3.80765192 14.43215680 ## [111] 4.08958699 4.16327058 9.37706970 -0.39219344 6.82007319 ## [116] 1.83964187 -3.35316863 6.17367174 11.26183249 5.86168428 ## [121] 0.85848619 5.66362556 5.97709909 11.19157117 -2.32222683 ## [126] -5.94454234 0.58661545 -2.79610756 7.28583499 6.91673624 ## [131] 9.91181766 5.92051775 1.72797287 3.23017492 7.43930278 ## [136] 4.20454123 9.64234283 1.48563329 -0.25898716 -0.64607874 ## [141] 5.76774981 8.68013988 9.10635351 2.13588656 10.68277763 ## [146] 1.11641613 7.49395812 8.46573681 0.78491647 3.79984505 ## [151] -1.90167480 4.14934869 3.48473366 5.33742552 5.42704419 ## [156] 4.70996143 -2.76430711 0.78376691 -6.86349119 -0.69192375 ## [161] 6.09358059 5.12445137 0.18244692 9.94252159 2.72627810 ## [166] 4.16258085 -2.35417501 8.39818126 5.86982982 8.64323216 ## [171] 9.51749731 4.67405253 9.06525459 -5.23911142 4.70515293 ## [176] 2.80144610 -0.84840951 -0.48354246 8.83556428 11.89620820 ## [181] 3.48856558 9.18710915 6.70426610 2.25804360 2.70558376 ## [186] 8.76899693 7.75751976 9.88269235 0.70550674 7.44891047 ## [191] 6.28157594 3.72706337 6.82909798 4.49427018 -2.00642330 ## [196] 15.02499979 0.51808953 3.40825687 11.09204651 5.82432307 ## [201] 5.98795099 7.48675266 3.75081522 7.45829741 1.13783993 ## [206] 16.33627005 3.07505735 4.78652789 -0.20291518 8.79782983 ## [211] 8.53251214 6.58910816 1.49922080 8.74403224 6.42228868 ## [216] 3.67361570 4.90035049 -1.57317278 4.57125321 -3.98611434 ## [221] 0.69295861 5.69711543 -1.90025469 7.01235984 6.96291778 ## [226] 14.87708852 1.85053756 14.02972212 5.97832151 3.71309847 ## [231] 3.11678680 7.23839814 5.59203317 4.44367893 6.12704920 ## [236] 7.90842337 3.44297137 2.19366015 7.93937080 1.79886447 ## [241] 8.57513706 7.59935219 -0.93692810 0.57020916 10.39677541 ## [246] 4.07837313 2.07656789 -7.05983632 -0.85122676 0.65814596 ## [251] 6.81393414 4.83827451 4.25464179 10.28440763 2.58970699 ## [256] -2.56129368 5.62247763 3.29919898 1.16038998 6.04043428 ## [261] 5.66996155 4.26982405 7.39799115 4.38894463 6.83922914 ## [266] 0.03110225 1.21467097 5.86351079 1.54496805 0.17006072 ## [271] 4.05381136 0.79999741 6.37087967 6.40068107 7.48521624 ## [276] 6.49105738 2.51430547 5.61696857 4.26931588 -3.13096089 ## [281] -0.83665087 0.65526972 5.29514568 -1.39143267 3.89158404 ## [286] -1.06487195 0.67653643 10.04474010 8.97227957 8.74917316 ## [291] 4.59288408 0.28833419 7.21622112 3.49198432 7.84519655 ## [296] 4.19929824 -1.71020482 10.02808865 5.33825323 -3.97953926 ## [301] 3.51798751 -0.49098583 -1.17324410 3.36316638 7.60616913 ## [306] 2.39909110 7.55113803 1.60662476 8.06705924 12.29217430 ## [311] 5.28096590 0.95704890 4.51926889 2.33051079 -0.63667524 ## [316] 11.56937157 5.98440648 0.24935598 5.51796222 10.64573745 ## [321] 7.13708545 10.70487580 4.35040710 8.90944609 3.94358986 ## [326] 4.38384429 7.12334926 10.00382913 4.57416657 7.06839417 ## [331] 1.01444991 5.50102111 3.34576564 0.98912591 1.11451279 ## [336] 9.15955009 11.85054897 8.81561793 1.64909107 1.41488297 ## [341] 9.96211421 -3.19378607 1.95576514 6.42103103 3.75929401 ## [346] 10.78373371 4.77151669 3.74579063 8.53716605 4.43205763 ## [351] 7.20349690 6.63713051 4.18466430 10.59259251 0.76222903 ## [356] 11.01665092 5.28440687 2.39110067 3.79579572 1.90148839 ## [361] 5.87278489 -4.13468953 3.77648890 5.15696086 -4.17697108 ## [366] 8.59001537 5.95958679 6.72485646 1.96857559 7.59055740 ## [371] 0.87148210 6.78005659 8.92934855 -1.49765650 -0.11066633 ## [376] -0.99017087 6.04895421 0.54569595 5.70787752 4.71065633 ## [381] 5.23116589 8.39433524 1.31476256 4.15097373 0.77547762 ## [386] 13.30965344 2.09756665 0.70906561 2.65373860 4.94195620 ## [391] 3.88938599 5.72490989 4.00129585 2.16444675 6.83045606 ## [396] 7.83103322 5.93073867 3.44484737 3.80981496 -2.34544951 ## [401] 9.58887004 4.00008643 1.85792459 -0.02515946 2.40138272 ## [406] 12.90675195 9.80265586 2.47082403 -0.76844011 13.60769624 ## [411] 9.36826818 10.72639443 3.46096578 10.30052733 4.26981075 ## [416] 2.28782402 3.23104176 -7.65476736 9.54285932 3.44924526 ## [421] 2.04019776 -0.24469840 7.67851777 1.88439744 9.81495069 ## [426] 6.54187490 5.26208369 9.46083202 8.74018678 -5.67920225 ## [431] 6.49542731 -0.52891878 -0.13972480 12.45892126 2.89652000 ## [436] 2.50129492 3.85852774 3.74570829 6.56180422 4.81480421 ## [441] 7.50857401 7.29314437 -1.83358588 1.42251865 9.59238142 ## [446] 4.30380923 -0.05325168 -1.07284593 2.92911613 1.44220195 ## [451] 12.67837507 3.89355956 4.17775314 3.04128277 3.10763774 ## [456] 2.06747977 13.71911715 6.07166129 6.28465413 5.61908403 ## [461] 4.03039419 -4.33270157 1.39868894 12.34747360 4.93207967 ## [466] -0.29845829 6.59439034 0.99067747 2.75992913 5.35283982 ## [471] 4.45243489 3.72409140 9.36744816 1.92701767 5.71881881 ## [476] 10.31334068 5.87235120 8.21101067 -0.80418037 6.90719216 ## [481] 6.09270261 -2.92460467 2.16536368 5.04996073 7.33236503 ## [486] 2.92034483 5.13729178 3.96372063 5.23129043 0.61577220 ## [491] -5.22388292 -1.17296988 -1.30878423 2.52631686 7.86708203 ## [496] 0.25150295 1.54527816 7.75777191 9.31357334 12.11521701 ## [501] 0.18268820 9.56309191 2.37228410 5.57399061 1.52431121 ## [506] 4.58852696 2.99529088 2.98972755 1.81834511 0.88295009 ## [511] 9.33983002 6.71072541 -0.26706337 0.70362315 -0.33109537 ## [516] 5.79380321 3.74149247 6.88678193 9.41053545 3.90436618 ## [521] 10.55560117 -4.32435274 8.14976625 3.41565106 5.22826708 ## [526] 8.46542374 14.12916005 7.29827380 6.34079240 3.01867655 ## [531] 0.40234407 3.34740064 9.52790689 5.76767239 2.18525055 ## [536] 1.78769986 4.91635029 -3.38142220 8.14809139 3.87973719 ## [541] 5.63362223 -2.53979538 9.45059953 4.53861041 4.52450595 ## [546] -0.84365788 7.25707158 -1.81605631 4.80966654 -0.37719654 ## [551] 4.09277678 8.27792615 9.68452435 3.28809091 2.47413143 ## [556] 8.68192562 9.44958550 3.40511735 1.40134788 9.55384688 ## [561] 2.73423122 7.02149299 2.19203578 6.53665918 -0.11493691 ## [566] 7.56853901 5.02142669 1.41795194 -0.04548809 4.99580517 ## [571] 5.30186946 2.94151522 9.23153041 3.07368586 5.44913125 ## [576] 1.88793113 10.47150411 -0.87269094 2.54076211 1.57882247 ## [581] 2.49462882 3.22293909 -4.12117638 2.08280958 7.41549302 ## [586] 3.87718539 10.98038367 -2.46333821 8.43258609 2.72918065 ## [591] 6.00532905 5.47720130 -5.76321457 4.92276620 6.64076628 ## [596] 4.30452703 4.81753640 15.59453515 1.82118310 9.40653383 ## [601] 4.89236864 2.63164289 3.02783680 3.29461572 3.16818426 ## [606] 9.43678847 2.74561912 3.79041443 5.65419928 1.25285836 ## [611] 7.90488561 8.82697544 5.22640845 9.24572958 6.79151479 ## [616] 5.42799314 7.94924217 8.18014999 6.13114097 9.60390548 ## [621] 3.49670430 0.35200052 0.87093666 -2.34943006 3.78368487 ## [626] 3.68918957 -2.99192365 3.48614737 6.36611615 3.06258258 ## [631] 4.51080355 5.92657630 6.91609085 3.93691828 2.21297679 ## [636] -0.86174873 -3.91027619 2.11102537 -2.16213383 8.06740350 ## [641] 1.41425644 4.00906014 -0.54496133 12.06117750 5.35171233 ## [646] 3.37059534 0.65302667 10.23630654 4.08253194 0.68711444 ## [651] 5.88119180 6.45263087 8.20557468 6.00011323 -0.51234339 ## [656] 4.64543828 -2.08973778 3.65725732 0.32806066 3.86382281 ## [661] 1.27525657 2.73446366 -1.36418201 1.11692179 3.38723650 ## [666] 2.69727440 -2.01759243 5.57416352 1.27265425 2.03104792 ## [671] 2.35589951 6.08363281 2.17452880 2.43778845 6.21719557 ## [676] 1.23325149 6.52976617 1.59904472 7.07458604 0.83715677 ## [681] 4.54485678 1.24864433 3.49086701 8.16292360 6.53567029 ## [686] -4.00926500 1.22001448 4.56446968 6.49793451 4.78248431 ## [691] 0.68842851 4.86187224 7.58575336 6.44763955 6.09278894 ## [696] 3.37676296 14.58651779 10.31462490 -0.51442565 5.99984402 ## [701] -2.67241578 5.62216969 7.07441414 9.04982264 11.57932078 ## [706] 3.09955021 6.40182476 6.26852894 6.06602020 4.69270310 ## [711] 6.13436700 5.45013399 4.58112614 7.60882036 4.19755193 ## [716] 10.59657153 6.37631089 -0.56037968 5.57854237 4.19708146 ## [721] 5.78917163 8.91859184 -1.98935841 3.65075501 3.84355866 ## [726] -3.24741735 6.75794362 6.97426789 8.68467494 1.35229936 ## [731] -0.26211183 2.61197204 4.71726989 4.47752962 -1.10129528 ## [736] -1.25997432 -7.56782259 7.36997221 5.75319493 -4.22923961 ## [741] -2.57267169 0.95309046 7.57350376 4.09971589 9.09036895 ## [746] 6.30403911 9.75169362 -0.34417339 -4.44945202 4.55263751 ## [751] 7.11735720 5.08329676 -2.77737692 3.89037017 -0.04336854 ## [756] 10.18114274 -1.76346034 -3.65963250 0.33489621 11.26775311 ## [761] 3.57473173 1.90409332 0.83819623 -0.85069260 -3.28358858 ## [766] 0.97280159 4.25887000 4.67748384 0.48749170 3.86259277 ## [771] 8.76677025 2.96449831 -0.91310985 12.69584132 6.69823627 ## [776] 10.70085527 4.00380579 2.71387013 0.09741676 -0.38609436 ## [781] 4.67533455 3.57373017 6.27212270 3.78583783 5.98152651 ## [786] 4.51717333 6.23879241 -2.13212612 8.44854138 11.35871290 ## [791] -2.40100142 7.76606323 4.87881774 1.69293398 7.30102646 ## [796] 0.82641092 7.33093156 5.94140025 3.16192034 4.68307984 ## [801] 1.30376958 -0.17696865 1.21785467 2.97089999 5.97058606 ## [806] 4.10178654 1.47424037 6.18722427 8.28083829 4.92583772 ## [811] 9.13512843 10.67133185 12.24951378 6.10345015 1.48902154 ## [816] 0.65097241 0.73958150 8.89252894 6.43467531 11.26374403 ## [821] 3.85789227 3.47799538 8.64904685 6.66682455 7.88733179 ## [826] 8.71940240 7.90968769 7.91374196 9.12383157 8.08421641 ## [831] 6.47392059 3.64321626 11.44368230 8.44592483 -0.37776058 ## [836] 0.71719843 -0.71859166 5.57558911 8.06663898 -1.76215105 ## [841] -1.74015138 6.17341891 5.59615141 6.24983894 2.14667656 ## [846] 8.35481561 -0.95347946 -0.95247392 9.63996750 -0.29839890 ## [851] 7.18423127 1.58782085 3.02072372 0.21807840 -1.57784124 ## [856] 15.35206098 1.93447110 -4.11729807 10.59249361 10.63475012 ## [861] 3.26326613 -2.45388654 7.86782233 0.72146781 1.85284667 ## [866] 0.19962972 -2.18518271 1.31237899 5.63265468 8.89727787 ## [871] 8.31981977 5.71156143 7.91696626 -0.17096840 -5.38134179 ## [876] 1.65955771 8.99136032 1.29578968 2.38957657 3.63550352 ## [881] 2.63493504 5.36925429 7.26361399 6.72330977 6.31165309 ## [886] 5.95031056 7.10825632 14.78157227 4.63953453 2.13562823 ## [891] -2.33681115 3.12947759 1.88516558 14.23716030 9.26984091 ## [896] 0.83046053 8.14406965 5.10564168 6.86479793 4.61013341 ## [901] 0.15922338 -0.81365268 2.13282391 2.54925555 -3.55562467 ## [906] 1.71837690 2.20493180 3.56216524 0.62824274 2.40163819 ## [911] 4.31252438 3.88517098 4.37812732 -0.22174507 6.05282884 ## [916] -2.72860204 10.66545697 3.32275220 5.72849716 8.89133615 ## [921] 5.46268660 7.11209211 6.27677847 4.78695948 2.15461835 ## [926] 7.08075096 2.11510494 5.06270325 -1.86939803 0.19581409 ## [931] 11.49732463 11.15812795 12.07385665 12.68234583 7.27857730 ## [936] 5.08217708 11.25810159 2.75265335 2.09149805 6.37976777 ## [941] -5.52593502 6.81294809 8.45254605 1.39728722 5.90271087 ## [946] 8.20400621 6.12542798 7.12848066 1.97907217 -2.99548969 ## [951] 2.71775703 15.27918025 -3.26660084 2.61435423 3.74953191 ## [956] -2.96214672 7.95009438 10.30751915 3.22125649 3.53897496 ## [961] -1.89036988 6.08662844 14.11931926 1.41969285 6.29046988 ## [966] 3.03758037 6.54338676 4.51210389 1.95310435 3.59330889 ## [971] 0.83925140 -0.05183834 4.78204124 4.29517945 7.59155015 ## [976] 6.12373287 9.32454573 4.53182760 10.48858284 3.10954274 ## [981] 8.08077130 4.29430985 5.46108216 3.27200776 -0.98936775 ## [986] 5.61245949 8.45073639 11.53328463 7.33360777 2.17785126 ## [991] 4.02673249 2.82589181 6.37308680 2.17703416 2.12089529 ## [996] 4.34692658 8.95440032 -3.68895622 -3.88805575 2.62295331 ## ## [[5]] ## [1] 7.770096232 0.285473508 5.739724545 8.116735340 ## [5] -0.242776376 4.352965021 3.625902504 5.109656308 ## [9] 4.015628379 10.329866650 -1.703265181 0.530817038 ## [13] -3.003621177 5.731795390 1.925707025 1.390340083 ## [17] 1.613405012 7.483005773 -1.077453653 9.025454165 ## [21] 2.738386953 4.666181285 11.975023378 6.017799341 ## [25] 2.734322491 7.127061079 7.833830205 11.424477381 ## [29] -0.511097151 2.970654949 0.166650138 12.144358288 ## [33] 5.539311850 -2.496708098 0.082620318 9.858176322 ## [37] 6.471608323 14.450483058 -1.854697966 10.967931098 ## [41] 4.184463848 1.937633784 14.175854203 0.002046747 ## [45] -2.265309858 9.207880191 9.676466555 9.498213048 ## [49] 5.825000916 8.781824861 -0.914925137 7.129238163 ## [53] -4.842016791 0.604830480 -4.996742599 9.922097472 ## [57] 5.282924662 0.170563495 0.866564229 -3.357947407 ## [61] -0.804570991 10.871563329 8.267612264 6.814877516 ## [65] -0.797281539 9.809335164 7.775954028 -1.705791741 ## [69] 3.498269871 15.010961328 -7.400768179 2.646484219 ## [73] 6.904599852 6.306420466 1.906152481 -1.809896716 ## [77] -4.328356557 4.210033391 13.322947516 3.353073482 ## [81] 2.215557012 3.002124316 6.821450030 6.484749769 ## [85] 9.413961637 8.874980668 3.725475473 11.005429378 ## [89] 6.111715918 7.779052686 0.879376498 -1.130860959 ## [93] -1.708125561 7.472814549 1.734843657 10.494505465 ## [97] 7.716348725 3.026403989 -5.521418230 -9.728688948 ## [101] 4.345526686 4.076592612 6.359270643 8.624244411 ## [105] 2.903358247 -8.121074157 13.368677808 0.846904451 ## [109] 14.006916590 6.358145768 6.576430124 5.118987728 ## [113] -0.278847315 0.540826952 7.661231946 -10.482619760 ## [117] -3.470719177 -6.635985360 4.121558887 -3.162041990 ## [121] 6.332162147 2.512998309 10.333251916 4.128002340 ## [125] -2.909225816 -10.588335315 6.665038519 2.947108726 ## [129] 0.679997253 13.024428263 -1.999235369 0.563650241 ## [133] 10.632786733 4.023250535 1.852659176 11.908011072 ## [137] -1.190381271 4.869581341 7.734799033 12.993465309 ## [141] 7.718583980 3.945543237 -4.168644063 4.660019370 ## [145] 6.070076801 12.333573092 10.648513871 1.462477037 ## [149] 3.237729184 13.636589310 7.905492216 9.675014246 ## [153] 4.392108754 6.723211534 -1.898788931 2.131774969 ## [157] -5.663205395 6.978705947 0.527934705 15.930213659 ## [161] 7.913542607 13.613126898 9.932878694 6.049952905 ## [165] 1.899399653 14.811788003 17.692886602 4.975696425 ## [169] 6.851297127 5.716430278 4.774125885 0.687727247 ## [173] -1.117305244 2.786244692 0.237773013 1.028862128 ## [177] 3.733178835 3.612508420 9.272855658 6.903327499 ## [181] 4.873962766 1.382821226 7.734739643 0.126484303 ## [185] 17.434625867 9.513079627 7.207253076 2.529632995 ## [189] 1.700454998 10.198380992 4.442886081 3.342695175 ## [193] 0.673294231 2.474054776 7.244180326 -3.217645348 ## [197] 2.780124018 4.779534268 -0.292777623 6.580206773 ## [201] 1.923680846 15.094643969 0.195769387 3.729371476 ## [205] -4.530108032 8.221908808 3.360452436 4.906858931 ## [209] 10.035764131 0.509021610 6.819959952 4.128446013 ## [213] 5.903537976 2.926114946 0.015026260 3.857271559 ## [217] 5.012696634 8.758013599 3.616544600 1.788432183 ## [221] -0.672121908 0.503405201 16.680343410 5.710127221 ## [225] 10.305679464 7.461001214 14.832639037 7.457985913 ## [229] -2.415871215 19.724510552 9.802584102 2.853821989 ## [233] 13.988266381 15.809128987 1.953143520 -2.866525587 ## [237] 5.541483212 1.735248903 -2.670700035 3.291078545 ## [241] 5.272830309 2.628087467 4.291234196 5.191279245 ## [245] 10.418138209 7.894550506 4.354573601 0.857782330 ## [249] 12.068957446 -1.880341604 7.992296627 -2.095578150 ## [253] 10.353626098 1.237128571 16.264920748 -3.176066114 ## [257] 3.358322077 3.818580898 5.724766580 -1.366431588 ## [261] 9.293801587 11.849592798 -3.297444420 6.034455118 ## [265] 5.234121195 5.347704543 10.801512057 13.756234481 ## [269] 7.649431213 -2.431873668 11.688265454 10.283669937 ## [273] -2.397606095 3.838789935 3.733065031 -3.534730809 ## [277] -1.987922188 1.289215984 2.533105821 3.595444199 ## [281] 9.314363241 8.107368761 -0.220942294 8.243495899 ## [285] -1.129237872 7.264370747 12.209731001 4.494844775 ## [289] 3.390426850 3.998537359 7.785540780 4.419870388 ## [293] 5.725978551 12.793210822 9.968278341 8.406592717 ## [297] 2.686869192 5.347136716 14.772263858 2.451452569 ## [301] 6.948688569 3.520427381 4.556510398 11.331311785 ## [305] 6.203763404 10.972856722 3.478965254 8.106157911 ## [309] 4.575059967 10.116639034 10.175066952 2.250279321 ## [313] -3.466037840 18.234065103 9.242546685 7.101236314 ## [317] -3.847016237 -0.780516868 -4.848921042 10.499982247 ## [321] 7.491597309 -2.996367965 9.634888593 10.261192787 ## [325] 6.555454266 8.591566038 4.202516670 1.875617116 ## [329] -1.159829599 -0.362658319 4.792150267 4.810480908 ## [333] 4.328558230 8.009794607 7.688840988 -3.111386312 ## [337] 8.516915995 1.249510678 -3.479682919 3.431292400 ## [341] 5.426515147 4.158844852 8.300102577 3.695247587 ## [345] -2.828898366 13.135319850 -0.691166136 11.448652137 ## [349] 9.864225296 2.589899833 6.535840371 2.558005515 ## [353] 6.232027673 6.301807103 12.725015491 6.778224944 ## [357] 8.659066876 3.293992005 7.359999325 7.662101356 ## [361] 1.948321983 6.311674530 5.344500190 12.779768599 ## [365] 2.043324082 8.869790298 8.371205341 10.977332356 ## [369] 11.416304649 2.288261670 3.479205926 3.487904158 ## [373] 11.652872305 8.423929011 6.577413134 -2.512279200 ## [377] 3.166279784 2.430431115 2.424073144 10.808259536 ## [381] -1.137226906 3.391368632 0.316421261 0.805028410 ## [385] 2.492772826 4.431920260 -2.617092069 5.297570073 ## [389] 12.047137350 5.320914235 6.813945862 0.939781851 ## [393] 1.617344399 7.525060090 10.998900027 10.324212802 ## [397] -2.301180927 -2.197345970 5.245157605 2.778084883 ## [401] 3.293232278 5.911348730 4.003460179 6.540434436 ## [405] 4.910990755 8.717744460 6.521117741 2.041978101 ## [409] 12.801874189 2.130638860 3.849204115 1.960296931 ## [413] 5.058900975 8.205881894 2.552125631 -2.296031788 ## [417] 3.908680459 8.876789491 14.448453519 -4.213337150 ## [421] 2.555404691 19.116892850 8.859905662 -1.250635926 ## [425] 9.997475823 3.576085485 1.971386285 4.745312410 ## [429] 7.956046239 3.576507556 5.692000868 13.382783029 ## [433] 8.509258566 -1.130020359 5.199688840 1.865095180 ## [437] 5.548640519 3.475167730 -1.232949523 4.777987978 ## [441] 3.407486513 8.204403150 7.104986438 9.855661083 ## [445] -2.036677440 9.874450596 5.115599386 9.358096560 ## [449] 0.432020034 3.219249437 9.879760468 2.054413064 ## [453] 3.192414955 3.616774696 6.002935409 14.855050803 ## [457] 6.110623323 -1.501971647 0.736777864 2.728319834 ## [461] 4.114860692 7.400623420 2.052315804 -3.469390873 ## [465] -0.166070652 12.126484009 6.299370354 16.204019569 ## [469] 12.038429113 3.590703050 2.681020296 5.237198734 ## [473] 4.111724602 5.224731418 -0.748738211 8.133497332 ## [477] 9.932413979 5.901910668 8.641386401 8.737013497 ## [481] 11.719594507 6.797037423 5.459075606 15.208290521 ## [485] -1.027148457 7.118903748 10.207577583 -1.977871096 ## [489] 2.448940096 4.132828781 6.929385690 5.966449063 ## [493] 1.946812183 3.637183583 1.964060680 3.055239647 ## [497] 4.514610819 13.102924297 6.989158605 11.787934259 ## [501] -0.284745215 9.605059251 10.007463357 4.283866681 ## [505] 5.272951379 -1.259904597 4.597145250 9.852819103 ## [509] 12.213512835 7.780376569 3.809526818 12.189385531 ## [513] 3.079500721 -5.429574323 -0.041042016 2.760415560 ## [517] 5.675090470 -1.603828367 6.510002029 6.007846768 ## [521] 18.990103958 4.847340506 1.610584369 5.725946769 ## [525] 7.461699478 8.534326384 3.439835210 5.895330978 ## [529] 2.326970663 6.459847931 6.645485631 11.106098933 ## [533] -0.947734589 3.684356798 5.796691321 -3.373772124 ## [537] 12.238864539 7.016671571 13.978836027 6.466067120 ## [541] 1.558814092 1.788917756 7.053869862 -3.271204762 ## [545] 1.237713823 -5.974132346 10.073451850 9.996848502 ## [549] 7.800891076 4.621447689 -1.431554445 12.260527924 ## [553] 8.884994187 13.267979381 9.568557951 5.999746368 ## [557] -6.807859762 -2.702510824 9.428651755 6.297686867 ## [561] 5.731200375 0.303983962 5.075933466 11.042370268 ## [565] 3.017371392 12.543083075 6.917580341 -6.210541605 ## [569] 15.967562529 6.314811313 4.881219305 4.684353715 ## [573] 8.940680991 -1.969915764 9.686163842 0.479048086 ## [577] 9.224200887 11.614984749 4.924807145 4.532422244 ## [581] 1.973402494 -1.310362157 3.595137345 7.808877805 ## [585] 3.304635472 2.264313579 -0.211414847 -0.256145941 ## [589] 9.136930647 14.004668667 -2.493984869 0.949398713 ## [593] 8.442057595 6.843315237 7.381984783 11.334071500 ## [597] -1.124661275 7.097112844 -4.486149715 -3.510095559 ## [601] 4.576888029 5.372536036 13.071071723 1.407335424 ## [605] 7.669890758 -1.441107042 4.698735272 5.210323194 ## [609] 2.164289241 -0.558331022 10.480120263 2.694934766 ## [613] -0.087623819 8.131050920 3.397207544 13.331354408 ## [617] 10.224453557 2.477620604 -6.445304963 2.602656845 ## [621] 9.666076946 2.316934696 8.837065597 5.662362307 ## [625] -3.906911875 13.840818071 8.354019791 0.639887428 ## [629] 10.095136652 9.300714017 6.526957967 2.240544075 ## [633] 4.957313957 2.722039575 9.137759931 6.698972817 ## [637] 5.307412471 0.865562359 1.963018787 1.841367688 ## [641] 5.118995929 5.163763345 3.853519187 8.885862567 ## [645] 8.644703484 12.300494624 3.178803993 9.972827253 ## [649] 3.695389384 0.064613927 9.880873066 2.702524930 ## [653] 10.530594738 3.709150592 1.360948749 -1.948984254 ## [657] 13.493158013 4.538824618 10.213222212 0.456638241 ## [661] 5.063400910 1.614357821 3.946982959 6.953914207 ## [665] 11.975577020 6.857771753 3.031222225 -5.689952214 ## [669] 10.815540529 -0.345677393 3.564740292 1.975556534 ## [673] 6.560126365 7.080727295 3.067467286 12.644231301 ## [677] 12.965008013 5.031357864 0.814657644 9.324259243 ## [681] 1.998104191 0.237106617 8.335496004 6.711165178 ## [685] 3.379577986 8.057381198 4.891140016 -1.976965691 ## [689] 6.867356291 6.253459308 4.134334566 11.282433403 ## [693] 2.519355800 0.185418956 9.110190812 -0.136011885 ## [697] 5.933097608 4.296580179 7.132165661 2.039719005 ## [701] 2.238886200 -6.599773689 5.977501892 13.388591145 ## [705] 7.300441855 3.303616473 6.042682390 8.738509268 ## [709] 8.513659592 -3.447732582 3.361796078 9.680386421 ## [713] 7.613754656 1.750089543 5.803964837 6.393826241 ## [717] 3.824250836 4.632686154 -3.068732035 14.510249707 ## [721] 13.903877922 5.047838275 4.335105416 15.259486786 ## [725] 6.154109237 5.333921609 4.708607705 -0.134098050 ## [729] -7.293960683 -0.474218746 2.172582907 12.549873686 ## [733] 5.874316263 7.986828533 1.736779262 12.513783059 ## [737] 0.038888483 9.569226272 -2.713804047 4.998153279 ## [741] 6.563195811 1.606375887 7.173870734 13.991650913 ## [745] 1.270944266 4.182709544 2.075390099 7.204295325 ## [749] 4.957436807 -2.851612168 8.767068295 7.453223506 ## [753] -1.077935863 13.785523868 6.718030964 8.453926919 ## [757] 5.172683531 -3.465289053 6.880834832 3.975613135 ## [761] 2.037882318 7.536403653 5.773716055 6.485519532 ## [765] -4.616233959 3.293508512 15.564680847 13.454628284 ## [769] 14.142172971 -2.041991660 -1.675664235 -0.506379851 ## [773] -2.184871597 0.736998014 6.961745345 7.578766702 ## [777] 3.340111266 -2.331569031 0.899044938 9.249531855 ## [781] -2.212021071 5.401227425 -2.267015878 2.302010817 ## [785] 6.079593207 7.729714996 5.661879447 1.792361443 ## [789] 3.058067166 6.631323985 7.285693598 5.131252732 ## [793] 1.154968296 -1.631771907 6.105576419 3.933438537 ## [797] 7.912877164 -0.906889645 6.062753372 -7.310900528 ## [801] -4.351353340 10.195993344 -1.569286927 14.407530906 ## [805] 6.022114707 4.108414959 -4.183095342 7.419595516 ## [809] 2.034759006 4.102892479 4.897867540 11.221754391 ## [813] 7.677778518 3.853959061 13.509997609 4.517030259 ## [817] 4.235566287 1.838306323 4.812049195 8.545471473 ## [821] 2.541901601 6.851244659 1.860833209 -0.516031995 ## [825] -3.478122987 3.526094883 9.460220256 5.560141621 ## [829] -7.283726805 10.424176217 0.949701488 11.504298686 ## [833] 0.525429151 -1.371514011 2.887742154 5.170670788 ## [837] 5.009298274 4.024197380 1.979129979 0.535416640 ## [841] 7.566195421 6.780504828 7.472455506 6.492304647 ## [845] 4.958779972 8.374916146 4.225744739 -2.617184780 ## [849] 11.403182205 -7.394231376 4.990746622 4.289314185 ## [853] 4.805394437 -1.410317052 4.037203953 1.981062236 ## [857] 2.974765847 8.650356383 12.255458375 3.634172636 ## [861] 11.315376701 11.574527745 4.343679622 1.699091619 ## [865] 5.759277160 2.462829288 9.690475378 5.918060497 ## [869] 1.834555503 4.383101403 8.719179490 8.898595082 ## [873] 5.214079316 6.414502886 11.677422818 4.900466486 ## [877] 9.529804200 12.139826725 2.381000226 4.598579994 ## [881] 10.413666712 2.203060238 -0.593212415 10.329949086 ## [885] 12.496358097 8.521232297 10.316433169 7.506182152 ## [889] 12.478007937 6.006402966 3.642729925 4.592271125 ## [893] 4.964410240 9.772572323 4.296052846 8.143643606 ## [897] 11.393089044 4.518062113 -0.363368533 0.009993704 ## [901] 1.173786479 -3.933795690 6.134693445 5.863289857 ## [905] 7.247018283 -1.848586903 10.890736145 3.968872011 ## [909] 5.139412571 12.602263614 11.343242812 12.735954653 ## [913] -1.203268605 1.850717766 14.120400900 0.147169411 ## [917] 10.209364736 7.328275099 8.097179967 2.743137956 ## [921] 3.576327801 10.826922130 1.356150834 -0.736258571 ## [925] 0.872982778 2.346119069 3.265494768 2.702492595 ## [929] -0.517012882 9.425936878 4.286796379 1.424342099 ## [933] 4.183800785 5.992676365 1.263808010 2.593606165 ## [937] 9.804965646 4.981999043 15.120128609 12.800506174 ## [941] 4.124534184 -1.896493037 1.760468808 6.975414258 ## [945] 11.611819589 1.614077978 14.548983520 -0.299433584 ## [949] 2.434160541 13.195362792 3.574858155 -1.173880428 ## [953] 1.400061470 -1.561020514 10.172949144 6.287026853 ## [957] 6.941807150 1.070371909 0.175639601 6.155524505 ## [961] 14.649699626 6.013562173 5.829446662 -2.547893908 ## [965] 6.469545415 8.111610285 -4.004791612 4.494817269 ## [969] 3.210101148 7.407901447 2.988869539 10.549328526 ## [973] 5.517943326 5.327017829 7.395055723 -0.403991102 ## [977] -3.581762641 6.042979448 10.990007932 2.554003650 ## [981] 6.444348572 1.273338853 4.061630394 0.639796443 ## [985] -2.796711796 3.529272378 -1.739301363 5.183466604 ## [989] 5.288504405 5.897913860 11.088815623 4.136421705 ## [993] 6.083478740 0.738802369 -3.126176585 -3.360733898 ## [997] -0.220005460 11.191613341 4.894870323 6.554129968
mapply()
function can be use to automatically "vectorize" a function.Here's an example of a function that computes the sum of squares \(\sum_{i=1}^n(x_i-\mu)^2/\sigma^2\).
sumsq <- function(mu, sigma, x) { sum(((x - mu)/sigma)^2) }
This function takes a mean mu
, a standard deviation sigma
, and some data in a vector x
.
In many statistical applications, we want to minimize the sum of squares to find the optimal mu
and sigma
. Before we do that, we may want to evaluate or plot the function for many different values of mu
or sigma
. However, passing a vector of mu
s or sigma
s won't work with this function because it's not vectorized.
x <- rnorm(100) ## Generate some data sumsq(1:10, 1:10, x) ## This is not what we want
## [1] 102.6366
Note that the call to sumsq()
only produced one value instead of 10 values.
However, we can do what we want to do by using mapply()
.
mapply(sumsq, 1:10, 1:10, MoreArgs = list(x = x))
## [1] 177.75073 114.48944 104.24053 101.14824 99.94315 99.41072 99.16312 ## [8] 99.05000 99.00502 98.99614
There's even a function in R called Vectorize()
that automatically can create a vectorized version of your function. So we could create a vsumsq()
function that is fully vectorized as follows.
vsumsq <- Vectorize(sumsq, c("mu", "sigma")) vsumsq(1:10, 1:10, x)
## [1] 177.75073 114.48944 104.24053 101.14824 99.94315 99.41072 99.16312 ## [8] 99.05000 99.00502 98.99614
The loop functions in R are very powerful because they allow you to conduct a series of operations on data using a compact form
The operation of a loop function involves iterating over an R object (e.g. a list or vector or matrix), applying a function to each element of the object, and the collating the results and returning the collated results.
Loop functions make heavy use of anonymous functions, which exist for the life of the loop function but are not stored anywhere
The split()
function can be used to divide an R object in to subsets determined by another variable which can subsequently be looped over using loop functions.
In this lab, you will use the temperature data in four cities: Melbourne, Sydney, Brisbane and Cairns. You can download them from https://yanfei.site/docs/sc/data/temp.zip.
load.file()
to read a .csv file and transform the first column (a character representing date and time) using as.POSIXlt
into R time format.load.file()
to each filename using lapply()
.Chapters 14, 15 and 18 of the book "R programming for data science".