
Statistical Computing
Lecture 1: R basics

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Objectives

¥ Overview of R
¥ R nuts and bolts
¥ Getting data in and out of R
¥ Subsetting R objects

Overview of R

What is R?

¥ A freely available language and environment
¥ Statistical computing and graphics
¥ Linear and nonlinear modelling, statistical tests, time series analysis, classiÞcation, clustering,

etc.

Installation

¥ Install R
¥ Install Rstudio

Why Rstudio?

¥ Syntax highlighting
¥ Able to evaluate R code

Ð by line
Ð by selection
Ð entire Þle

¥ Command auto-completion

Design of the R System

¥ When you download R from CRAN, you get the ÒbaseÓ system - a substantial amount of functionality.

¥ 10,000 packages on CRAN that have been developed by users and programmers around the
world.

¥ People often make packages available on their personal websites.

¥ There are a number of packages being developed on repositories like GitHub and BitBucket.

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/#download

R Nuts and Bolts

Basic Operations

1 + 2 + 3
[1] 6
1 + 2 * 3
[1] 7

x <- 1
y <- 2
z <- c(x, y)
z
[1] 1 2

exp(1)
[1] 2.718282
cos(3.141593)
[1] -1
log2 (1)
[1] 0

R Objects

R has Þve basic classes of objects:

1. character
2. numeric (real numbers)
3. integer
4. complex
5. logical (True/False)

Numbers

¥ Numbers in R are generally treated as numeric objects.
¥ Di!erence of 1 and 1L?
¥ Special numberInf . Try 1/Inf .
¥ NaN: an undeÞned value (not a number). Try0/0 . It can also be thought of as a missing value.

Attributes

Attributes can be accessed byattributes() . Some examples of R object attributes are:

¥ names, dimnames
¥ dimensions (e.g. matrices, arrays)
¥ class (e.g. integer, numeric)
¥ length

Vectors

The c() function can be used to create vectors of objects by concatenating things together.

2

x <- c(0.5 , 0.6) ## numeric
x <- c(TRUE, FALSE) ## logical
x <- c(T, F) ## logical
x <- c("a" , "b" , "c") ## character
x <- 9: 29 ## integer
x <- c(1 + (0+0i), 2 + (0+4i)) ## complex

You can also use thevector() function to initialize vectors.

x <- vector ("numeric" , length = 10)
x
[1] 0 0 0 0 0 0 0 0 0 0

Matrices

m <- matrix (c(1: 6), 2, 3)
attributes (m)
$dim
[1] 2 3
dim(m)
[1] 2 3
t (m)
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
m[1, 2]
[1] 3
m[1,]
[1] 1 3 5
n <- matrix (c(8: 13), 2, 3)
cbind (m, n)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 8 10 12
[2,] 2 4 6 9 11 13
rbind (m, n)
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
[3,] 8 10 12
[4,] 9 11 13

Lists

¥ Special data structure that matrix could not handle.
Ð Data length are not the same.
Ð Data type are not the same.

l <- list (a = c(1, 2), b = "apple")
attributes (l)
$names
[1] "a" "b"

3

Factors

Factors are used to represent categorical data.

f <- factor (c("yes" , "yes" , "no" , "yes" , "no"))
attributes (f)
$levels
[1] "no" "yes"
##
$class
[1] "factor"

Data Frames

¥ A special type of list.
¥ Unlike matrices Ð data frames can store di!erent classes of objects in each column.
¥ They have column names and row names.

d <- data.frame (x = 1: 10, y = letters[1: 10])
attributes (d)
$names
[1] "x" "y"
##
$class
[1] "data.frame"
##
$row.names
[1] 1 2 3 4 5 6 7 8 9 10
names(d)
[1] "x" "y"
row.names(d)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

Names

Names are very useful for writing readable code and self-describing objects.

x <- 1: 3
names(x)
NULL
names(x) <- c("New York", "Seattle" , "Los Angeles")
x
New York Seattle Los Angeles
1 2 3
names(x)
[1] "New York" "Seattle" "Los Angeles"

Lists can also have names, which is often very useful.

x <- list (! Los Angeles! = 1, Boston = 2, London = 3)
x
$! Los Angeles!
[1] 1
##

4

$Boston
[1] 2
##
$London
[1] 3
names(x)
[1] "Los Angeles" "Boston" "London"

Getting Data in and out of R

Reading and Writing Data

There are a few principal functions reading data into R.

¥ read.table , read.csv , for reading tabular data
¥ readLines , for reading lines of a text Þle
¥ source , for reading in R code Þles (inverse of dump)
¥ dget , for reading in R code Þles (inverse of dput)
¥ load , for reading in saved workspaces

There are analogous functions for writing data to Þles.

¥ write.table , for writing tabular data to text Þles (i.e. CSV) or connections
¥ writeLines , for writing character data line-by-line to a Þle or connection
¥ dump, for dumping a textual representation of multiple R objects
¥ dput , for outputting a textual representation of an R object
¥ save, for saving an arbitrary number of R objects in binary format (possibly compressed) to a Þles

There are many R packages that have been developed to read in all kinds of other datasets (e.g., thereadr
package).

Subsetting R objects

How to Subset?

There are three operators that can be used to extract subsets of R objects.

¥ The [operator always returns an object of the same class as the original. It can be used to select
multiple elements of an object

¥ The [[operator is used to extract elements of a list or a data frame. It can only be used to extract a
single element and the class of the returned object will not necessarily be a list or data frame.

¥ The $ operator is used to extract elements of a list or data frame by literal name. Its semantics are
similar to that of [[.

Subsetting a Vector

Vectors are basic objects in R and they can be subsetted using the[operator.

x <- c("a" , "b" , "c" , "c" , "d" , "a")
x[1] ## Extract the first element
[1] "a"

5

x[2] ## Extract the second element
[1] "b"

The [operator can be used to extract multiple elements of a vector by passing the operator an integer
sequence. Here we extract the Þrst four elements of the vector.

x[1: 4]
[1] "a" "b" "c" "c"
x[c(1, 3, 4)]
[1] "a" "c" "c"
x[x > 2]
[1] "a" "b" "c" "c" "d" "a"

Subsetting a Matrix

Matrices can be subsetted in the usual way with (i,j) type indices.

x <- matrix (1: 6, 2, 3)
x
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

We can access the(1, 2) or the (2, 1) element of this matrix using the appropriate indices.

x[1, 2]
[1] 3
x[2, 1]
[1] 2

Indices can also be missing. This behavior is used to access entire rows or columns of a matrix.

x[1,] ## Extract the first row
[1] 1 3 5
x[, 2] ## Extract the second column
[1] 3 4

Subsetting Lists

ists in R can be subsetted using all three of the operators mentioned above, and all three are used for di!erent
purposes.

x <- list (foo = 1: 4, bar = 0.6)
x
$foo
[1] 1 2 3 4
##
$bar
[1] 0.6

The [[operator can be used to extractsingle elements from a list. Here we extract the Þrst element of the
list.

x[[1]]
[1] 1 2 3 4

6

The [[operator can also use named indices so that you donÕt have to remember the exact ordering of every
element of the list. You can also use the$ operator to extract elements by name.

x[["bar"]]
[1] 0.6
x$bar
[1] 0.6

Subsetting Nested Elements of a List

The [[operator can take an integer sequence if you want to extract a nested element of a list.

x <- list (a = list (10, 12, 14), b = c(3.14 , 2.81))
Get the 3rd element of the 1st element
x[[c(1, 3)]]
[1] 14
Same as above
x[[1]][[3]]
[1] 14
1st element of the 2nd element
x[[c(2, 1)]]
[1] 3.14

Extracting Multiple Elements of a List

The [operator can be used to extractmultiple elements from a list. For example, if you wanted to extract
the Þrst and third elements of a list, you would do the following

x <- list (foo = 1: 4, bar = 0.6 , baz = "hello")
x[c(1, 3)]
$foo
[1] 1 2 3 4
##
$baz
[1] "hello"

Note that x[c(1, 3)] is NOT the same asx[[c(1, 3)]] .

Remember that the [operator always returns an object of the same class as the original. Since the original
object was a list, the [operator returns a list. In the above code, we returned a list with two elements (the
Þrst and the third).

Removing NA Values

A common task in data analysis is removing missing values (NAs).

x <- c(1, 2, NA, 4, NA, 5)
bad <- is.na (x)
print (bad)
[1] FALSE FALSE TRUE FALSE TRUE FALSE
x[! bad]
[1] 1 2 4 5

7

What if there are multiple R objects and you want to take the subset with no missing values in any of those
objects?

head(airquality)
Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
good <- complete.cases (airquality)
head(airquality[good,])
Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
7 23 299 8.6 65 5 7
8 19 99 13.8 59 5 8

Review of this lecture

¥ Overview of R
¥ R nuts and bolts
¥ Getting data in and out of R
¥ Subsetting R objects

Lab Session 1

Read and Write Data in R

YouÕll be working with swimming_pools.csv; it contains data on swimming pools in Brisbane, Australia
(Source: data.gov.au). The Þle contains the column names in the Þrst row. It uses a comma to separate
values within rows.

1. Try read.csv() and read.table() to import Òswimming_pools.csvÓ as a data frame with the name
pools .

2. Try write.table() , dput() , and save() functions to write pools to Þles.
3. Restart R and read your saved data in R.
4. Practice subsetting of a data frame.

References

Chapters 3-10 of the book ÒR programming for data scienceÓ.

8

http://s3.amazonaws.com/assets.datacamp.com/production/course_1477/datasets/swimming_pools.csv
https://data.gov.au/

Statistical Computing
Lecture 2: Managing data frames with thedplyr package

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Data Frames

¥ data frame is a key data structure in statistics and in R.
¥ one observation per row and each column represents a variable
¥ we need to have good tools for dealing with them.
¥ you have seensubset() function and the use of [and $
¥ dplyr package is designed to mitigate a lot of complex operations for data frames.

The dplyr Package

¥ by Hadley Wickham of RStudio
¥ everything dplyr does could already be done with base R, but itgreatly simpliÞes existing functionality

in R.
¥ it provides a ÒgrammarÓ (in particular, verbs) for data manipulation and for operating on data frames.
¥ the dplyr functions are very fast, as many key operations are coded in C++.

dplyr Grammar

Some of the key ÒverbsÓ provided by thedplyr package are

¥ select : return a subset of the columns of a data frame, using a ßexible notation
¥ filter : extract a subset of rows from a data frame based on logical conditions
¥ arrange : reorder rows of a data frame
¥ rename: rename variables in a data frame
¥ mutate: add new variables/columns or transform existing variables
¥ summarise / summarize: generate summary statistics of di!erent variables in the data frame, possibly

within strata
¥ %>%: the ÒpipeÓ operator is used to connect multiple verb actions together into a pipeline

Common dplyr Function Properties

All of the functions have a few common characteristics. In particular,

1. The Þrst argument is a data frame.

2. The subsequent arguments describe what to do with the data frame speciÞed in the Þrst argument, and
you can refer to columns in the data frame directly without using the $ operator (just use the column
names).

3. The return result of a function is a new data frame.

4. Data frames must be properly formatted and annotated for this to all be useful. In particular, the data
must be tidy. In short, there should be one observation per row, and each column should represent a
feature or characteristic of that observation.

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site
http://www.jstatsoft.org/v59/i10/paper

Installing the dplyr package

install.packages ("dplyr")

After installing the package it is important that you load it into your R session with the library() function.

library (dplyr)
##
Attaching package: ! dplyr !
The following objects are masked from ! package:stats ! :
##
filter, lag
The following objects are masked from ! package:base! :
##
intersect, setdiff, setequal, union

select()

We will use a dataset containing air pollution and temperature data for the city of Chicago in the U.S.

chicago <- readRDS("chicago.rds")

dim(chicago)
[1] 6940 8
str (chicago)
! data.frame ! : 6940 obs. of 8 variables:
$ city : chr "chic" "chic" "chic" "chic" ...
$ tmpd : num 31.5 33 33 29 32 40 34.5 29 26.5 32.5 ...
$ dptp : num 31.5 29.9 27.4 28.6 28.9 ...
$ date : Date, format: "1987-01-01" "1987-01-02" ...
$ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ...
$ pm10tmean2: num 34 NA 34.2 47 NA ...
$ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ...
$ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ...

Sometimes you may want to use only a couple of variables out of many.

names(chicago)[1: 3]
[1] "city" "tmpd" "dptp"
subset <- select (chicago, city : dptp)
head(subset)
city tmpd dptp
1 chic 31.5 31.500
2 chic 33.0 29.875
3 chic 33.0 27.375
4 chic 29.0 28.625
5 chic 32.0 28.875
6 chic 40.0 35.125

Sometimes you may want to drop some variables that are not useful.

select (chicago, - (city : dptp))

If you wanted to keep every variable that ends with a Ò2Ó, we could do

2

http://www.biostat.jhsph.edu/~rpeng/leanpub/rprog/chicago_data.zip

subset <- select (chicago, ends_with ("2"))
str (subset)
! data.frame ! : 6940 obs. of 4 variables:
$ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ...
$ pm10tmean2: num 34 NA 34.2 47 NA ...
$ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ...
$ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ...

Or if we wanted to keep every variable that starts with a ÒdÓ, we could do

subset <- select (chicago, starts_with ("d"))
str (subset)
! data.frame ! : 6940 obs. of 2 variables:
$ dptp: num 31.5 29.9 27.4 28.6 28.9 ...
$ date: Date, format: "1987-01-01" "1987-01-02" ...

filter()

The filter() function is used to extract subsets of rows from a data frame.

chic.f <- filter (chicago, pm25tmean2 > 30)
str (chic.f)
! data.frame ! : 194 obs. of 8 variables:
$ city : chr "chic" "chic" "chic" "chic" ...
$ tmpd : num 23 28 55 59 57 57 75 61 73 78 ...
$ dptp : num 21.9 25.8 51.3 53.7 52 56 65.8 59 60.3 67.1 ...
$ date : Date, format: "1998-01-17" "1998-01-23" ...
$ pm25tmean2: num 38.1 34 39.4 35.4 33.3 ...
$ pm10tmean2: num 32.5 38.7 34 28.5 35 ...
$ o3tmean2 : num 3.18 1.75 10.79 14.3 20.66 ...
$ no2tmean2 : num 25.3 29.4 25.3 31.4 26.8 ...

summary(chic.f $pm25tmean2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
30.05 32.12 35.04 36.63 39.53 61.50

We could for example extract the rows where PM2.5 is greater than 30and temperature is greater than 80
degrees Fahrenheit.

chic.f <- filter (chicago, pm25tmean2 > 30 & tmpd > 80)
select (chic.f, date, tmpd, pm25tmean2)
date tmpd pm25tmean2
1 1998-08-23 81 39.60000
2 1998-09-06 81 31.50000
3 2001-07-20 82 32.30000
4 2001-08-01 84 43.70000
5 2001-08-08 85 38.83750
6 2001-08-09 84 38.20000
7 2002-06-20 82 33.00000
8 2002-06-23 82 42.50000
9 2002-07-08 81 33.10000
10 2002-07-18 82 38.85000
11 2003-06-25 82 33.90000
12 2003-07-04 84 32.90000
13 2005-06-24 86 31.85714

3

14 2005-06-27 82 51.53750
15 2005-06-28 85 31.20000
16 2005-07-17 84 32.70000
17 2005-08-03 84 37.90000

arrange()

The arrange() function is used to reorder rows of a data frame according to one of the variables/columns.

Here we can order the rows of the data frame by date, so that the Þrst row is the earliest (oldest) observation
and the last row is the latest (most recent) observation.

chicago <- arrange (chicago, date)

We can now check the Þrst few rows

head(select (chicago, date, pm25tmean2), 3)
date pm25tmean2
1 1987-01-01 NA
2 1987-01-02 NA
3 1987-01-03 NA

and the last few rows.

tail (select (chicago, date, pm25tmean2), 3)
date pm25tmean2
6938 2005-12-29 7.45000
6939 2005-12-30 15.05714
6940 2005-12-31 15.00000

Columns can be arranged in descending order too by useing the specialdesc() operator.

chicago <- arrange (chicago, desc(date))

Looking at the Þrst three and last three rows shows the dates in descending order.

head(select (chicago, date, pm25tmean2), 3)
date pm25tmean2
1 2005-12-31 15.00000
2 2005-12-30 15.05714
3 2005-12-29 7.45000
tail (select (chicago, date, pm25tmean2), 3)
date pm25tmean2
6938 1987-01-03 NA
6939 1987-01-02 NA
6940 1987-01-01 NA

How would you do this in base R without dplyr ?

rename()

Renaming a variable in a data frame in R is surprisingly hard to do! Therename() function is designed to
make this process easier.

Here you can see the names of the Þrst Þve variables in thechicago data frame.

4

head(chicago[, 1: 5], 3)
city tmpd dptp date pm25tmean2
1 chic 35 30.1 2005-12-31 15.00000
2 chic 36 31.0 2005-12-30 15.05714
3 chic 35 29.4 2005-12-29 7.45000

Now we rename the awkward variable names.

chicago <- rename(chicago, dewpoint = dptp, pm25 =pm25tmean2)
head(chicago[, 1: 5], 3)
city tmpd dewpoint date pm25
1 chic 35 30.1 2005-12-31 15.00000
2 chic 36 31.0 2005-12-30 15.05714
3 chic 35 29.4 2005-12-29 7.45000

mutate()

The mutate() function exists to compute transformations of variables in a data frame.

For example, with air pollution data, we often want to detrend the data by subtracting the mean from the
data.

chicago <- mutate(chicago, pm25detrend = pm25- mean(pm25, na.rm = TRUE))
head(chicago)
city tmpd dewpoint date pm25 pm10tmean2 o3tmean2 no2tmean2
1 chic 35 30.1 2005-12-31 15.00000 23.5 2.531250 13.25000
2 chic 36 31.0 2005-12-30 15.05714 19.2 3.034420 22.80556
3 chic 35 29.4 2005-12-29 7.45000 23.5 6.794837 19.97222
4 chic 37 34.5 2005-12-28 17.75000 27.5 3.260417 19.28563
5 chic 40 33.6 2005-12-27 23.56000 27.0 4.468750 23.50000
6 chic 35 29.6 2005-12-26 8.40000 8.5 14.041667 16.81944
pm25detrend
1 -1.230958
2 -1.173815
3 -8.780958
4 1.519042
5 7.329042
6 -7.830958

group_by()

The group_by() function is used to generate summary statistics from the data frame within strata deÞned
by a variable. For example, in this air pollution dataset, you might want to know what the average annual
level of PM2.5 is.

First, we can create ayear varible using as.POSIXlt() .

chicago <- mutate(chicago, year = as.POSIXlt (date) $year + 1900)

Now we can create a separate data frame that splits the original data frame by year.

years <- group_by(chicago, year)

Finally, we compute summary statistics for each year in the data frame with thesummarize() function.

5

summarize(years, pm25 =mean(pm25, na.rm = TRUE), o3 = max(o3tmean2,
na.rm = TRUE), no2 = median(no2tmean2, na.rm = TRUE))

A tibble: 19 x 4
year pm25 o3 no2
<dbl> <dbl> <dbl> <dbl>
1 1987 NaN 63.0 23.5
2 1988 NaN 61.7 24.5
3 1989 NaN 59.7 26.1
4 1990 NaN 52.2 22.6
5 1991 NaN 63.1 21.4
6 1992 NaN 50.8 24.8
7 1993 NaN 44.3 25.8
8 1994 NaN 52.2 28.5
9 1995 NaN 66.6 27.3
10 1996 NaN 58.4 26.4
11 1997 NaN 56.5 25.5
12 1998 18.3 50.7 24.6
13 1999 18.5 57.5 24.7
14 2000 16.9 55.8 23.5
15 2001 16.9 51.8 25.1
16 2002 15.3 54.9 22.7
17 2003 15.2 56.2 24.6
18 2004 14.6 44.5 23.4
19 2005 16.2 58.8 22.6

group_by()

In a slightly more complicated example, we might want to know what are the average levels of ozone (o3)
and nitrogen dioxide (no2) within quintiles of pm25. A slicker way to do this would be through a regression
model, but we can actually do this quickly with group_by() and summarize() .

First, we can create a categorical variable ofpm25divided into quintiles.

qq <- quantile (chicago $pm25, seq(0, 1, 0.2), na.rm = TRUE)
chicago <- mutate(chicago, pm25.quint = cut (pm25, qq))

Now we can group the data frame by thepm25.quint variable.

quint <- group_by(chicago, pm25.quint)

Finally, we can compute the mean ofo3 and no2 within quintiles of pm25.

summarize(quint, o3 = mean(o3tmean2, na.rm = TRUE), no2 = mean(no2tmean2,
na.rm = TRUE))

A tibble: 6 x 3
pm25.quint o3 no2
<fct> <dbl> <dbl>
1 (1.7,8.7] 21.7 18.0
2 (8.7,12.4] 20.4 22.1
3 (12.4,16.7] 20.7 24.4
4 (16.7,22.6] 19.9 27.3
5 (22.6,61.5] 20.3 29.6
6 <NA> 18.8 25.8

6

%>%

The pipeline operater %>%is very handy for stringing together multiple dplyr functions in a sequence of
operations.

third (second(first (x)))

This nesting is not a natural way to think about a sequence of operations. The%>%operator allows you to
string operations in a left-to-right fashion, i.e.

first (x) %>%second %>%third

%>%

Take the example that we just did in the last section where we computed the mean ofo3 and no2 within
quintiles of pm25. There we had to

1. create a new variablepm25.quint
2. split the data frame by that new variable
3. compute the mean ofo3 and no2 in the sub-groups deÞned bypm25.quint

That can be done with the following sequence in a single R expression.

mutate(chicago, pm25.quint = cut (pm25, qq)) %>%group_by(pm25.quint) %>%
summarize(o3 = mean(o3tmean2, na.rm = TRUE), no2 = mean(no2tmean2,

na.rm = TRUE))
A tibble: 6 x 3
pm25.quint o3 no2
<fct> <dbl> <dbl>
1 (1.7,8.7] 21.7 18.0
2 (8.7,12.4] 20.4 22.1
3 (12.4,16.7] 20.7 24.4
4 (16.7,22.6] 19.9 27.3
5 (22.6,61.5] 20.3 29.6
6 <NA> 18.8 25.8

Summary

The dplyr package provides a concise set of operations for managing data frames. With these functions we
can do a number of complex operations in just a few lines of code. In particular, we can often conduct the
beginnings of an exploratory analysis with the powerful combination ofgroup_by() and summarize() .

¥ dplyr can work with other data frame ÒbackendsÓ such as SQL databases. There is an SQL interface
for relational databases via the DBI package

¥ dplyr can be integrated with the data.table package for large fast tables

The dplyr package is handy way to both simplify and speed up your data frame management code. ItÕs rare
that you get such a combination at the same time!

Lab Session 1 ContÕd

dplyr

YouÕll be working with theairquality in the R packagedatasets . Bear in mind %>%.

7

1. Please return all the rows where Temp is larger than 80 and Month is after May.
2. Please add a new column that displays the temperature in Celsius.
3. Calculate the mean temperature in each month.
4. Remove all the data corresponding to Month = 5, group the data by month, and then Þnd the mean of

the temperature each month.

References

Chapter 13 of the book ÒR programming for data scienceÓ.

8

Statistical Computing
Lecture 3: Control structures and functions

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Control structures

Commonly used control structures

¥ if and else : testing a condition and acting on it

¥ for : execute a loop a Þxed number of times

¥ while : execute a loopwhile a condition is true

¥ repeat : execute an inÞnite loop (mustbreak out of it to stop)

¥ break : break the execution of a loop

¥ next : skip an interation of a loop

if -else

The if -else combination is probably the most commonly used control structure in R (or perhaps any
language). For starters, you can just use theif statement.

if (<condition >) {
do something

}
Continue with rest of code

if -else

If you have an action you want to execute when the condition is false, then you need anelse clause.

if (<condition >) {
do something

}
else {

do something else
}

You can have a series of tests by following the initialif with any number of else if s.

if (<condition1 >) {
do something

} else if (<condition2 >) {
do something different

} else {
do something different

}

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

if -else Example

Generate a uniform random number
x <- runif (1, 0, 10)
if (x > 3) {

y <- 10
} else {

y <- 0
}

Or you can write:

y <- if (x > 3) {
10

} else {
0

}

for Loops

For loops are most commonly used for iterating over the elements of an object (list, vector, etc.)

for (i in 1: 10) {
print (i)

}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10

for Loops Example

The following three loops all have the same behavior.

x <- c("a" , "b" , "c" , "d")
for (i in 1: 4) {

Print out each element of ! x!
print (x[i])

}

[1] "a"
[1] "b"
[1] "c"
[1] "d"

The seq_along() function is commonly used in conjunction with for loops in order to generate an integer
sequence based on the length of an object (in this case, the objectx).

2

Generate a sequence based on length of ! x!
for (i in seq_along(x)) {

print (x[i])
}

[1] "a"
[1] "b"
[1] "c"
[1] "d"

It is not necessary to use an index-type variable.

for (letter in x) {
print (letter)

}

[1] "a"
[1] "b"
[1] "c"
[1] "d"

Nested for loops

for loops can be nested inside of each other.

x <- matrix (1: 6, 2, 3)
for (i in seq_len (nrow(x))) {

for (j in seq_len (ncol (x))) {
print (x[i, j])

}
}

Nested loops are commonly needed for multidimensional or hierarchical data structures (e.g. matrices, lists).

while Loops

While loops begin by testing a condition. If it is true, then they execute the loop body. Once the loop body
is executed, the condition is tested again, and so forth, until the condition is false, after which the loop exits.

count <- 0
while (count < 10) {

print (count)
count <- count + 1

}

[1] 0
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9

3

While loops can potentially result in inÞnite loops if not written properly. Use with care!

repeat Loops

repeat initiates an inÞnite loop right from the start. The only way to exit a repeat loop is to call break .

x0 <- 1
tol <- 1e-08
repeat {

x1 <- computeEstimate ()

if (abs(x1 - x0) < tol) {
Close enough?
break

} else {
x0 <- x1

}
}

next , break

next is used to skip an iteration of a loop.

for (i in 1: 100) {
if (i <= 20) {

Skip the first 20 iterations
next

}
Do something here

}

break is used to exit a loop immediately, regardless of what iteration the loop may be on.

for (i in 1: 100) {
print (i)
if (i > 20) {

Stop loop after 20 iterations
break

}
}

Summary

¥ Control structures like if , while , and for allow you to control the ßow of an R program

¥ InÞnite loops should generally be avoided, even if (you believe) they are theoretically correct.

¥ Control structures mentioned here are primarily useful for writing programs; for command-line interactive
work, the ÒapplyÓ functions are more useful.

4

Functions

Functions

¥ A transition from a mere ÒuserÓ to a developer!
¥ Often used to encapsulate a sequence of expressions that need to be executed numerous times, perhaps

under slightly di!erent conditions.
¥ Often written when code must be shared with others or the public.

Your First Function

Functions are deÞned using thefunction() directive and are stored as R objects just like anything else. In
particular, they are R objects of class ÒfunctionÓ.

f <- function () {
cat ("Hello, world! \n ")

}
f ()

Hello, world!

The last aspect of a basic function is thefunction arguments.

f <- function (num) {
for (i in seq_len (num)) {

cat ("Hello, world! \n ")
}

}
f (3)

Hello, world!
Hello, world!
Hello, world!

When to Write a Function?

If you Þnd yourself doing a lot of cutting and pasting, thatÕs usually a good sign that you might need to
write a function.

This next function returns the total number of characters printed to the console.

f <- function (num) {
hello <- "Hello, world! \n "
for (i in seq_len (num)) {

cat (hello)
}
chars <- nchar (hello) * num
chars

}
meaningoflife <- f (3)

Hello, world!
Hello, world!
Hello, world!

5

print (meaningoflife)

[1] 42

Default Values

Try this:

f ()

We can modify this behavior by setting a default valuefor the argument num.

f <- function (num =1) {
hello <- "Hello, world! \n "
for (i in seq_len (num)) {

cat (hello)
}
chars <- nchar (hello) * num
chars

}
f () ## Use default value for ! num!

Hello, world!

[1] 14

f (2) ## Use user-specified value

Hello, world!
Hello, world!

[1] 28

At this point, we have written a function that

¥ has oneformal argument named numwith a default valueof 1. The formal arguments are the arguments
included in the function deÞnition. The formals() function returns a list of all the formal arguments
of a function

¥ prints the message ÒHello, world!Ó to the console a number of times indicated by the argumentnum

¥ returns the number of characters printed to the console

Argument Matching

R assigns the Þrst value to the Þrst argument, the second value to second argument, etc. So in the following
call to rnorm()

str (rnorm)

function (n, mean = 0, sd = 1)

mydata <- rnorm(100, 2, 1) ## Generate some data

100 is assigned to then argument, 2 is assigned to themeanargument, and 1 is assigned to thesd argument,
all by positional matching.

Positional match first argument, default for ! na.rm!
sd(mydata)

6

[1] 1.025863

Specify ! x! argument by name, default for ! na.rm!
sd(x = mydata)

[1] 1.025863

Specify both arguments by name
sd(x = mydata, na.rm = FALSE)

[1] 1.025863

When specifying the function arguments by name, it doesnÕt matter in what order you specify them.

Specify both arguments by name
sd(na.rm = FALSE, x = mydata)

[1] 1.025863

You can mix positional matching with matching by name.

sd(na.rm = FALSE, mydata)

[1] 1.025863

Here, the mydata object is assigned to thex argument, because itÕs the only argument not yet speciÞed.

Below is the argument list for the lm() function, which Þts linear models to a dataset.

args (lm)

function (formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, ...)
NULL

The following two calls are equivalent.

lm(data = mydata, y ~ x, model = FALSE, 1: 100)
lm(y ~ x, mydata, 1: 100, model = FALSE)

Function arguments can also bepartially matched, which is useful for interactive work. The order of operations
when given an argument is

1. Check for exact match for a named argument
2. Check for a partial match
3. Check for a positional match

The ... Argument

¥ There is a special argument in R known as the... argument, which indicate a variable number of
arguments that are usually passed on to other functions.

¥ The ... argument is often used when extending another function and you donÕt want to copy the
entire argument list of the original function

¥ For example, a custom mean function may want to make use of the defaultmean() function along with
its entire argument list. The function below changes the default for thena.rm argument to the value
na.rm = "TRUE"(the original default was na.rm = "FALSE").

mymean <-function (x, na.rm = TRUE, ...) {
mean(x, na.rm = na.rm, ...) ## Pass ! ... ! to ! mean?rnorm! function

7

}
x <- c(1, 2, NA)
mean(x)
mymean(x)

Summary

¥ Functions can be deÞned using thefunction() directive and are assigned to R objects just like any
other R object

¥ Functions have can be deÞned with named arguments; these function arguments can have default values

¥ Functions arguments can be speciÞed by name or by position in the argument list

¥ Functions always return the last expression evaluated in the function body

¥ A variable number of arguments can be speciÞed using the special... argument in a function deÞnition.

Looping Functions

Looping on the Command Line

Writing for and while loops is useful when programming but not particularly easy when working interactively
on the command line. Multi-line expressions with curly braces are just not that easy to sort through when
working on the command line. R has some functions which implement looping in a compact form to make
your life easier.

¥ lapply() : Loop over a list and evaluate a function on each element

¥ sapply() : Same aslapply but try to simplify the result

¥ apply() : Apply a function over the margins of an array

¥ tapply() : Apply a function over subsets of a vector

¥ mapply() : Multivariate version of lapply

lapply()

The lapply() function does the following simple series of operations:

1. it loops over a list, iterating over each element in that list
2. it applies a function to each element of the list (a function that you specify)
3. and returns a list (the l is for ÒlistÓ).

This function takes three arguments: (1) a list X; (2) a function (or the name of a function) FUN; (3) other
arguments via its ... argument. If X is not a list, it will be coerced to a list using as.list() .

lapply() Example 1

HereÕs an example of applying themean() function to all elements of a list. If the original list has names, the
the names will be preserved in the output.

x <- list (a = 1: 5, b = rnorm(10))
lapply (x, mean)

8

$a
[1] 3
##
$b
[1] 0.4463099

Notice that here we are passing themean() function as an argument to the lapply() function. Functions in
R can be used this way and can be passed back and forth as arguments just like any other object. When you
pass a function to another function, you do not need to include the open and closed parentheses() like you
do when you arecalling a function.

lapply() Example 2

x <- list (a = 1: 4, b = rnorm(10), c = rnorm(20, 1), d = rnorm(100,
5))

lapply (x, mean)

$a
[1] 2.5
##
$b
[1] -0.1513343
##
$c
[1] 1.099387
##
$d
[1] 5.044237

lapply() Example 3

x <- 1: 4
lapply (x, runif)

[[1]]
[1] 0.6090059
##
[[2]]
[1] 0.6426180 0.2720511
##
[[3]]
[1] 0.2748745 0.1650714 0.3495338
##
[[4]]
[1] 0.06996351 0.81690008 0.39358289 0.54555616

Now how about other arguments?

Here, the min = 0 and max = 10arguments are passed down torunif() every time it gets called.

x <- 1: 4
lapply (x, runif, min = 0, max = 10)

[[1]]

9

[1] 0.07901924
##
[[2]]
[1] 8.124458 4.479709
##
[[3]]
[1] 5.660471 4.711902 3.588175
##
[[4]]
[1] 9.350531 4.850635 8.183975 7.664252

lapply() Example 4

Here I am creating a list that contains two matrices.

x <- list (a = matrix (1: 4, 2, 2), b = matrix (1: 6, 3, 2))
x

$a
[,1] [,2]
[1,] 1 3
[2,] 2 4
##
$b
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

¥ How do you extract the Þrst column of each matrix in the list?

¥ Now you need an anonymous function for extracting the Þrst column of each matrix.

lapply (x, function (elt) {
elt[, 1]

})

$a
[1] 1 2
##
$b
[1] 1 2 3

I can also deÞne the function separately.

f <- function (elt) {
elt[, 1]

}
lapply (x, f)

$a
[1] 1 2
##
$b
[1] 1 2 3

10

sapply()

The sapply() function behaves similarly to lapply() ; the only real di!erence is in the return value. sapply()
will try to simplify the result of lapply() if possible. Essentially,sapply() calls lapply() on its input and
then applies the following algorithm:

¥ If the result is a list where every element is length 1, then a vector is returned

¥ If the result is a list where every element is a vector of the same length (> 1), a matrix is returned.

¥ If it canÕt Þgure things out, a list is returned

HereÕs the result of callinglapply() .

x <- list (a = 1: 4, b = rnorm(10), c = rnorm(20, 1), d = rnorm(100,
5))

lapply (x, mean)

$a
[1] 2.5
##
$b
[1] -0.02610719
##
$c
[1] 0.9502227
##
$d
[1] 5.167316

HereÕs the result of callingsapply() on the same list.

sapply (x, mean)

a b c d
2.50000000 -0.02610719 0.95022269 5.16731559

split()

The split() function takes a vector or other objects and splits it into groups determined by a factor or list
of factors.

The arguments to split() are

str (split)

function (x, f, drop = FALSE, ...)

where

¥ x is a vector (or list) or data frame
¥ f is a factor (or coerced to one) or a list of factors
¥ drop indicates whether empty factors levels should be dropped

The combination of split() and a function like lapply() or sapply() is a common paradigm in R.

11

split() Example

Here we simulate some data and split it according to a factor variable. Note that we use thegl() function to
Ògenerate levelsÓ in a factor variable.

x <- c(rnorm(10), runif (10), rnorm(10, 1))
f <- gl (3, 10)
split (x, f)

$" 1"
[1] -0.5386728 0.9295600 -0.4682451 -0.4508130 -0.1778677 -0.5205303
[7] -1.5224860 -0.4957441 -1.6650648 0.5737440
##
$" 2"
[1] 0.2565500 0.9344672 0.3933274 0.5301347 0.2468453 0.9889854 0.5136659
[8] 0.6495695 0.8827517 0.5351771
##
$" 3"
[1] 1.38026130 2.38310883 1.53170210 2.61821018 1.17681609
[6] 1.37004551 1.14637725 -0.83498703 0.21195133 -0.05818388

A common idiom is split followed by an lapply .

lapply (split (x, f), mean)

$" 1"
[1] -0.433612
##
$" 2"
[1] 0.5931474
##
$" 3"
[1] 1.09253

Splitting a Data Frame

library (datasets)
head(airquality)

Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

We can split the airquality data frame by the Month variable so that we have separate sub-data frames for
each month.

s <- split (airquality, airquality $Month)
str (s)

List of 5
$ 5: ! data.frame ! : 31 obs. of 6 variables:
..$ Ozone : int [1:31] 41 36 12 18 NA 28 23 19 8 NA ...

12

..$ Solar.R: int [1:31] 190 118 149 313 NA NA 299 99 19 194 ...
..$ Wind : num [1:31] 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
..$ Temp : int [1:31] 67 72 74 62 56 66 65 59 61 69 ...
..$ Month : int [1:31] 5 5 5 5 5 5 5 5 5 5 ...
..$ Day : int [1:31] 1 2 3 4 5 6 7 8 9 10 ...
$ 6: ! data.frame ! : 30 obs. of 6 variables:
..$ Ozone : int [1:30] NA NA NA NA NA NA 29 NA 71 39 ...
..$ Solar.R: int [1:30] 286 287 242 186 220 264 127 273 291 323 ...
..$ Wind : num [1:30] 8.6 9.7 16.1 9.2 8.6 14.3 9.7 6.9 13.8 11.5 ...
..$ Temp : int [1:30] 78 74 67 84 85 79 82 87 90 87 ...
..$ Month : int [1:30] 6 6 6 6 6 6 6 6 6 6 ...
..$ Day : int [1:30] 1 2 3 4 5 6 7 8 9 10 ...
$ 7: ! data.frame ! : 31 obs. of 6 variables:
..$ Ozone : int [1:31] 135 49 32 NA 64 40 77 97 97 85 ...
..$ Solar.R: int [1:31] 269 248 236 101 175 314 276 267 272 175 ...
..$ Wind : num [1:31] 4.1 9.2 9.2 10.9 4.6 10.9 5.1 6.3 5.7 7.4 ...
..$ Temp : int [1:31] 84 85 81 84 83 83 88 92 92 89 ...
..$ Month : int [1:31] 7 7 7 7 7 7 7 7 7 7 ...
..$ Day : int [1:31] 1 2 3 4 5 6 7 8 9 10 ...
$ 8: ! data.frame ! : 31 obs. of 6 variables:
..$ Ozone : int [1:31] 39 9 16 78 35 66 122 89 110 NA ...
..$ Solar.R: int [1:31] 83 24 77 NA NA NA 255 229 207 222 ...
..$ Wind : num [1:31] 6.9 13.8 7.4 6.9 7.4 4.6 4 10.3 8 8.6 ...
..$ Temp : int [1:31] 81 81 82 86 85 87 89 90 90 92 ...
..$ Month : int [1:31] 8 8 8 8 8 8 8 8 8 8 ...
..$ Day : int [1:31] 1 2 3 4 5 6 7 8 9 10 ...
$ 9: ! data.frame ! : 30 obs. of 6 variables:
..$ Ozone : int [1:30] 96 78 73 91 47 32 20 23 21 24 ...
..$ Solar.R: int [1:30] 167 197 183 189 95 92 252 220 230 259 ...
..$ Wind : num [1:30] 6.9 5.1 2.8 4.6 7.4 15.5 10.9 10.3 10.9 9.7 ...
..$ Temp : int [1:30] 91 92 93 93 87 84 80 78 75 73 ...
..$ Month : int [1:30] 9 9 9 9 9 9 9 9 9 9 ...
..$ Day : int [1:30] 1 2 3 4 5 6 7 8 9 10 ...

Then we can take the column means forOzone, Solar.R , and Wind for each sub-data frame.

lapply (s, function (x) {
colMeans(x[, c("Ozone", "Solar.R" , "Wind")], na.rm = TRUE)

})

$" 5"
Ozone Solar.R Wind
23.61538 181.29630 11.62258
##
$" 6"
Ozone Solar.R Wind
29.44444 190.16667 10.26667
##
$" 7"
Ozone Solar.R Wind
59.115385 216.483871 8.941935
##
$" 8"
Ozone Solar.R Wind
59.961538 171.857143 8.793548

13

##
$" 9"
Ozone Solar.R Wind
31.44828 167.43333 10.18000

Using sapply() might be better here for a more readable output.

sapply (s, function (x) {
colMeans(x[, c("Ozone", "Solar.R" , "Wind")], na.rm = TRUE)

})

5 6 7 8 9
Ozone 23.61538 29.44444 59.115385 59.961538 31.44828
Solar.R 181.29630 190.16667 216.483871 171.857143 167.43333
Wind 11.62258 10.26667 8.941935 8.793548 10.18000

tapply()

tapply() is used to apply a function over subsets of a vector. It can be thought of as a combination of
split() and sapply() for vectors only.

str (tapply)

function (X, INDEX, FUN = NULL, ..., default = NA, simplify = TRUE)

The arguments to tapply() are as follows:

¥ X is a vector
¥ INDEXis a factor or a list of factors (or else they are coerced to factors)
¥ FUNis a function to be applied
¥ . . . contains other arguments to be passedFUN
¥ simplify , should we simplify the result?

tapply() Example

Given a vector of numbers, one simple operation is to take group means.

Simulate some data
x <- c(rnorm(10), runif (10), rnorm(10, 1))
Define some groups with a factor variable
f <- gl (3, 10)
f

[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
Levels: 1 2 3

tapply (x, f, mean)

1 2 3
0.1480750 0.5217016 1.0749164

It is equivalent to:

sapply (split (x, f), mean)

1 2 3
0.1480750 0.5217016 1.0749164

14

apply()

¥ Used to a evaluate a function over the margins of an array.
¥ Often used to apply a function to the rows or columns of a matrix.
¥ Using apply() is not really faster than writing a loop, but it works in one line and is highly compact.

str (apply)

function (X, MARGIN, FUN, ...)

The arguments to apply() are

¥ X is an array
¥ MARGINis an integer vector indicating which margins should be ÒretainedÓ.
¥ FUNis a function to be applied
¥ ... is for other arguments to be passed toFUN

apply() Example

Here I create a 20 by 10 matrix of Normal random numbers. I then compute the mean of each column.

x <- matrix (rnorm(200), 20, 10)
apply (x, 2, mean) ## Take the mean of each column

[1] 0.162590154 0.264977385 -0.222791353 0.219542710 0.127501619
[6] -0.002607522 0.010729913 0.172286913 -0.430984706 -0.086041934

I can also compute the sum of each row.

apply (x, 1, sum) ## Take the mean of each row

[1] -1.2495094 0.4610130 0.8709000 -5.7911196 5.9498309 -5.4315689
[7] -4.3392107 4.8994311 -1.4722936 -5.6203763 -0.8972293 2.5279202
[13] -1.2607678 8.3443647 -3.0409513 0.3704913 1.3521787 2.0395559
[19] 1.3034202 5.2879845

¥ Note that in both calls to apply() , the return value was a vector of numbers.
¥ The MARGINargument essentially indicates toapply() which dimension of the array you want to

preserve or retain. So when taking the mean of each column, I specify

apply (x, 2, mean)

Col/Row Sums and Means

For the special case of column/row sums and column/row means of matrices, we have some useful shortcuts.

¥ rowSums= apply(x, 1, sum)
¥ rowMeans= apply(x, 1, mean)
¥ colSums = apply(x, 2, sum)
¥ colMeans = apply(x, 2, mean)

The shortcut functions are heavily optimized and hence aremuch faster, but you probably wonÕt notice unless
youÕre using a large matrix. Another nice aspect of these functions is that they are a bit more descriptive.
ItÕs arguably more clear to writecolMeans(x) in your code than apply(x, 2, mean) .

15

Other Ways to Apply

You can do more than take sums and means with theapply() function. For example, you can compute
quantiles of the rows of a matrix using thequantile() function.

x <- matrix (rnorm(200), 20, 10)
Get row quantiles
apply (x, 1, quantile, probs = c(0.25 , 0.75))

[,1] [,2] [,3] [,4] [,5] [,6]
25% -0.8828056 -0.2131614 -0.1716636 -0.6753241 -0.5797748 0.3232881
75% 0.5387326 1.1380349 0.4517773 0.4433824 0.6252163 1.1695355
[,7] [,8] [,9] [,10] [,11] [,12]
25% -0.7031755 -0.4029417 -0.7935699 -0.4532591 -0.05619261 -0.6926032
75% 0.7559389 1.1000217 0.7200173 0.6407631 0.72531964 0.6539091
[,13] [,14] [,15] [,16] [,17] [,18]
25% -0.6450824 -0.8604518 -0.8428936 -1.0681552 -0.4191486 -0.8107607
75% 0.8404527 0.5207244 0.4128027 0.1198969 0.6404508 0.2626132
[,19] [,20]
25% 0.04098455 0.03793319
75% 0.56164971 1.07131897

Notice that I had to pass the probs = c(0.25, 0.75) argument to quantile() via the ... argument to
apply() .

mapply()

The mapply() function is a multivariate apply of sorts which applies a function in parallel over a set of
arguments. Recall that lapply() and friends only iterate over a single R object. What if you want to iterate
over multiple R objects in parallel? This is what mapply() is for.

str (mapply)

function (FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)

The arguments to mapply() are

¥ FUNis a function to apply
¥ ... contains R objects to apply over
¥ MoreArgs is a list of other arguments to FUN.
¥ SIMPLIFYindicates whether the result should be simpliÞed

The mapply() function has a di!erent argument order from lapply() because the function to apply comes
Þrst rather than the object to iterate over. The R objects over which we apply the function are given in the
... argument because we can apply over an arbitrary number of R objects.

mapply() Example

For example, the following is tedious to type

list(rep(1, 4), rep(2, 3), rep(3, 2), rep(4, 1))

With mapply() , instead we can do

mapply(rep, 1: 4, 4: 1)

16

[[1]]
[1] 1 1 1 1
##
[[2]]
[1] 2 2 2
##
[[3]]
[1] 3 3
##
[[4]]
[1] 4

This passes the sequence1:4 to the Þrst argument of rep() and the sequence4:1 to the second argument.

HereÕs another example for simulating randon Normal variables.

noise <- function (n, mean, sd) {
rnorm(n, mean, sd)

}
Simulate 5 randon numbers
noise (5, 1, 2)

[1] 3.4367350 0.9789327 3.2000309 1.2762248 -3.5700115

Here we can usemapply() to pass the sequence1:5 separately to the noise() function so that we can get 5
sets of random numbers, each with a di!erent length and mean.

x <- mapply(noise, 1000, 1: 5, 1: 5)
apply (x, 2, mean)

[1] 1.024402 2.077510 2.754549 4.063622 5.032008

The above call to mapply() is the same as

invisible (list (noise (1000, 1, 1), noise (1000, 2, 2), noise (1000,
3, 3), noise (1000, 4, 4), noise (1000, 5, 5)))

Vectorizing a Function

¥ The mapply() function can be use to automatically ÒvectorizeÓ a function.
¥ It can be used to take a function that typically only takes single arguments and create a new function

that can take vector arguments.

HereÕs an example of a function that computes the sum of squares
! n

i =1 (xi ! µ)2/! 2.

sumsq <- function (mu, sigma, x) {
sum(((x - mu)/ sigma) ^2)

}

This function takes a meanmu, a standard deviation sigma, and some data in a vectorx.

In many statistical applications, we want to minimize the sum of squares to Þnd the optimalmuand sigma.
Before we do that, we may want to evaluate or plot the function for many di!erent values of muor sigma.
However, passing a vector ofmus or sigmas wonÕt work with this function because itÕs not vectorized.

x <- rnorm(100) ## Generate some data
sumsq(1: 10, 1: 10, x) ## This is not what we want

[1] 106.4872

17

Note that the call to sumsq() only produced one value instead of 10 values.

However, we can do what we want to do by usingmapply() .

mapply(sumsq, 1: 10, 1: 10, MoreArgs = list (x = x))

[1] 177.02812 114.38448 104.22752 101.15984 99.96269 99.43270 99.18545
[8] 99.07182 99.02601 99.01616

ThereÕs even a function in R calledVectorize() that automatically can create a vectorized version of your
function. So we could create avsumsq() function that is fully vectorized as follows.

vsumsq <- Vectorize (sumsq, c("mu", "sigma"))
vsumsq(1: 10, 1: 10, x)

[1] 177.02812 114.38448 104.22752 101.15984 99.96269 99.43270 99.18545
[8] 99.07182 99.02601 99.01616

Summary

¥ The loop functions in R are very powerful because they allow you to conduct a series of operations on
data using a compact form

¥ The operation of a loop function involves iterating over an R object (e.g. a list or vector or matrix),
applying a function to each element of the object, and the collating the results and returning the
collated results.

¥ Loop functions make heavy use of anonymous functions, which exist for the life of the loop function but
are not stored anywhere

¥ The split() function can be used to divide an R object in to subsets determined by another variable
which can subsequently be looped over using loop functions.

Lab Session 2

In this lab, you will use the temperature data in four cities: Melbourne, Sydney, Brisbane and Cairns. You
can download them from https://yanfei.site/docs/sc/data/temp.zip.

1. Please make a functionload.file() to read a .csv Þle and transform the Þrst column (a character
representing date and time) usingas.POSIXlt into R time format.

2. Then apply load.file() to each Þlename usinglapply() .
3. How many rows of data are there for each city?
4. What is the hottest temperature recorded by city?
5. Estimate the autocorrelation function for each city.

References

Chapters 14, 15 and 18 of the book ÒR programming for data scienceÓ.

18

https://yanfei.site/docs/sc/data/temp.zip

Statistical Computing
Lecture 4: Dealing with text data

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Primary R Functions

The primary R functions for dealing with text data are

¥ grep() , grepl() : These functions search for matches of a regular pattern in a character vector.grep()
returns the indices into the character vector that contain a match or the speciÞc strings that happen
to have the match. grepl() returns a TRUE/ FALSEvector indicating which elements of the character
vector contain a match.

¥ regexpr() , gregexpr() : Search a character vector for pattern matches and return the indices of the
string where the match begins and the length of the match.

¥ sub() , gsub() : Search a character vector for pattern matches and replace that match with another
string.

¥ substr() : Extract substrings in a character vector.

¥ regexec() : This function searches a character vector for a pattern, much likeregexpr() , but it will
additionally return the locations of any parenthesized sub-expressions. Probably easier to explain
through demonstration.

Text data

We will use a running example using data from homicides in Baltimore City. You can get the Þle from https:
//yanfei.site/docs/sc/data/homicides.txt. Original data is from https://homicides.news.baltimoresun.com.

homicides <- readLines ("../data/homicides.txt")
Total number of events recorded
length (homicides)

[1] 1571

homicides[1]

[1] "39.311024, -76.674227, iconHomicideShooting, ! p2! , ! <dl><dt>Leon Nelson</dt><dd class=\"address\">3400 Clifton Ave.
Baltimore, MD 21216</dd><dd>black male, 17 years old</dd><dd>Found on January 1, 2007</dd><dd>Victim died at Shock Trauma</dd><dd>Cause: shooting</dd></dl> ! "

homicides[1000]

[1] "39.33626300000, -76.55553990000, icon_homicide_shooting, ! p1200! , ! <dl><dt>Davon Diggs</dt><dd class=\"address\">4100 Parkwood Ave
Baltimore, MD 21206</dd><dd>Race: Black
Gender: male
Age: 21 years old</dd><dd>Found on November 5, 2011</dd><dd>Victim died at Johns Hopkins Bayview Medical Center </dd><dd>Cause: Shooting</dd><dd class=\"popup-note\"><p>Originally reported in 5000 Belair Road; later determined to be rear alley of 4100 block Parkwood</p></dd></dl> ! "

We have the latitude and longitude of where the victim was found; then thereÕs the street address; the
age, race, and gender of the victim; the date on which the victim was found; in which hospital the victim
ultimately died; the cause of death.

grep()

Suppose we wanted to identify the records for all the victims of shootings (as opposed to other causes)? How
could we do that?

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site
https://yanfei.site/docs/sc/data/homicides.txt
https://yanfei.site/docs/sc/data/homicides.txt
https://homicides.news.baltimoresun.com

Here I usegrep() to match the literal iconHomicideShooting into the character vector of homicides.

g <- grep("iconHomicideShooting" , homicides)
length (g)

[1] 228

Using this approach I get 228 shooting deaths. However, I notice that for some of the entries, the indicator
for the homicide ÒßagÓ is noted asicon_homicide_shooting . ItÕs not uncommon over time for web site
maintainers to change the names of Þles or update Þles. What happens if we nowgrep() on both icon names
using the | operator?

g <- grep("iconHomicideShooting|icon_homicide_shooting" , homicides)
length (g)

[1] 1263

grep()

Another possible way to do this is to grep() on the cause of death Þeld, which seems to have the format
Cause: shooting . We can grep() on this literally and get

g <- grep("Cause: shooting" , homicides)
length (g)

[1] 228

Notice that we seem to be undercounting again. This is because for some of the entries, the word ÒshootingÓ
uses a captial ÒSÓ while other entries use a lower case ÒsÓ. We can handle this variation by using a character
class in our regular expression.

g <- grep("Cause: [Ss]hooting" , homicides)
length (g)

[1] 1263

grepl()

The function grepl() works much like grep() except that it di!ers in its return value. grepl() returns a
logical vector indicating which element of a character vector contains the match. For example, suppose we
want to know which states in the United States begin with word ÒNewÓ.

g <- grepl ("^New", state.name)
g

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[10] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[19] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[28] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[46] FALSE FALSE FALSE FALSE FALSE

state.name[g]

[1] "New Hampshire" "New Jersey" "New Mexico"
[4] "New York"

2

Here, we can see thatgrepl() returns a logical vector that can be used to subset the originalstate.name
vector.

regexpr()

¥ Both the grep() and the grepl() functions have some limitations - they donÕt tell you exactly where
the match occurs or what the match is for a more complicated regular expression.

¥ The regexpr() function gives you

Ð index into each string where the match begins
Ð length of the match for that string.

¥ regexpr() only gives you theÞrst match of the string (reading left to right). gregexpr() will give you
all of the matches in a given string if there are is more than one match.

regexpr() Example

In our Baltimore City homicides dataset, we might be interested in Þnding the date on which each victim
was found. Taking a look at the dataset

homicides[1]

[1] "39.311024, -76.674227, iconHomicideShooting, ! p2! , ! <dl><dt>Leon Nelson</dt><dd class=\"address\">3400 Clifton Ave.
Baltimore, MD 21216</dd><dd>black male, 17 years old</dd><dd>Found on January 1, 2007</dd><dd>Victim died at Shock Trauma</dd><dd>Cause: shooting</dd></dl> ! "

it seems that we might be able to just grep on the word ÒFoundÓ. However, the word ÒfoundÓ may be found
elsewhere in the entry, such as in this entry, where the word ÒfoundÓ appears in the narrative text at the end.

homicides[954]

[1] "39.30677400000, -76.59891100000, icon_homicide_shooting, ! p816! , ! <dl><dt>Kenly Wheeler</dt><dd class=\"address\">1400 N Caroline St
Baltimore, MD 21213</dd><dd>Race: Black
Gender: male
Age: 29 years old</dd><dd>Found on March 3, 2010</dd><dd>Victim died at Scene</dd><dd>Cause: Shooting</dd><dd class=\"popup-note\"><p>Wheeler\\ ! s body was found on the grounds of Dr. Bernard Harris Sr. Elementary School</p></dd></dl> ! "

But we can see that the date is typically preceded by ÒFound onÓ and is surrounded by<dd></dd> tags, so
letÕs use the pattern<dd>[F|f]ound(.*)</dd> and see what it brings up.

regexpr ("<dd>[F|f]ound(.*)</dd>" , homicides[1: 10])

[1] 177 178 188 189 178 182 178 187 182 183
attr(,"match.length")
[1] 93 86 89 90 89 84 85 84 88 84
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

We can use thesubstr() function to extract the Þrst match in the Þrst string.

substr (homicides[1], 177, 177 + 93 - 1)

[1] "<dd>Found on January 1, 2007</dd><dd>Victim died at Shock Trauma</dd><dd>Cause: shooting</dd>"

Picked up too much information? We need to use the? metacharacter to make the regular expression ÒlazyÓ
so that it stops at the Þrst </dd> tag.

regexpr ("<dd>[F|f]ound(.*?)</dd>" , homicides[1: 10])

[1] 177 178 188 189 178 182 178 187 182 183
attr(,"match.length")
[1] 33 33 33 33 33 33 33 33 33 33
attr(,"index.type")

3

[1] "chars"
attr(,"useBytes")
[1] TRUE

Now when we look at the substrings indicated by theregexpr() output, we get

substr (homicides[1], 177, 177 + 33 - 1)

[1] "<dd>Found on January 1, 2007</dd>"

Instead of usingsubstr() , regmatches() is more handy.

r <- regexpr ("<dd>[F|f]ound(.*?)</dd>" , homicides[1: 5])
regmatches(homicides[1: 5], r)

[1] "<dd>Found on January 1, 2007</dd>"
[2] "<dd>Found on January 2, 2007</dd>"
[3] "<dd>Found on January 2, 2007</dd>"
[4] "<dd>Found on January 3, 2007</dd>"
[5] "<dd>Found on January 5, 2007</dd>"

sub() and gsub()

Sometimes we need to clean things up or modify strings by matching a pattern and replacing it with something
else. For example, how can we extract the date from this string?

x <- substr (homicides[1], 177, 177 + 33 - 1)
x

[1] "<dd>Found on January 1, 2007</dd>"

We want to strip out the stu! surrounding the ÒJanuary 1, 2007Ó portion. We can do that by matching on
the text that comes before and after it using the | operator and then replacing it with the empty string.

sub("<dd>[F|f]ound on |</dd>" , "" , x)

[1] "January 1, 2007</dd>"

Notice that the sub() function found the Þrst match (at the beginning of the string) and replaced it and
then stopped. However, there was another match at the end of the string that we also wanted to replace. To
get both matches, we need thegsub() function.

gsub("<dd>[F|f]ound on |</dd>" , "" , x)

[1] "January 1, 2007"

The sub() and gsub() functions can take vector arguments so we donÕt have to process each string one by
one.

r <- regexpr ("<dd>[F|f]ound(.*?)</dd>" , homicides[1: 5])
m <- regmatches(homicides[1: 5], r)
m

[1] "<dd>Found on January 1, 2007</dd>"
[2] "<dd>Found on January 2, 2007</dd>"
[3] "<dd>Found on January 2, 2007</dd>"
[4] "<dd>Found on January 3, 2007</dd>"
[5] "<dd>Found on January 5, 2007</dd>"

4

d <- gsub("<dd>[F|f]ound on |</dd>" , "" , m)
Nice and clean
d

[1] "January 1, 2007" "January 2, 2007" "January 2, 2007"
[4] "January 3, 2007" "January 5, 2007"

Finally, it may be useful to convert these strings to the Date class so that we can do some date-related
computations.

as.Date (d, "%B %d, %Y")

[1] "2007-01-01" "2007-01-02" "2007-01-02" "2007-01-03"
[5] "2007-01-05"

regexec()

The regexec() function works like regexpr() except it gives you the indices for parenthesized sub-expressions.
For example, take a look at the following expression.

regexec("<dd>[F|f]ound on (.*?)</dd>" , homicides[1])

[[1]]
[1] 177 190
attr(,"match.length")
[1] 33 15
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

HereÕs the overall expression match.

substr (homicides[1], 177, 177 + 33 - 1)

[1] "<dd>Found on January 1, 2007</dd>"

And hereÕs the parenthesized sub-expression.

substr (homicides[1], 190, 190 + 15 - 1)

[1] "January 1, 2007"

All this can be done much more easily with theregmatches() function.

r <- regexec("<dd>[F|f]ound on (.*?)</dd>" , homicides[1: 2])
regmatches(homicides[1: 2], r)

[[1]]
[1] "<dd>Found on January 1, 2007</dd>"
[2] "January 1, 2007"
##
[[2]]
[1] "<dd>Found on January 2, 2007</dd>"
[2] "January 2, 2007"

5

regexec()

As an example, we can make a plot of monthly homicide counts. First we need a regular expression to capture
the dates.

r <- regexec("<dd>[F|f]ound on (.*?)</dd>" , homicides)
m <- regmatches(homicides, r)

Then we can loop through the list returned by regmatches() and extract the second element of each (the
parenthesized sub-expression).

dates <- sapply (m, function (x) x[2])

Finally, we can convert the date strings into the Date class and make a histogram of the counts.

invisible (dates <- as.Date (dates, "%B %d, %Y"))
hist (dates, "month" , freq = TRUE, main = "Monthly Homicides in Baltimore")

Monthly Homicides in Baltimore

dates

F
re

qu
en

cy

0
5

10
15

20
25

30
35

2006!12!31 2008!07!31 2010!02!28 2011!09!30 2013!04!30

We can see from the picture that homicides do not occur uniformly throughout the year and appear to have
some seasonality to them.

Summary

The primary R functions for dealing with regular expressions are

¥ grep() , grepl() : Search for matches of a regular expression/pattern in a character vector

¥ regexpr() , gregexpr(): Search a character vector for regular expression matches and
return the indices where the match begins; useful in conjunction with regmatches()Ô

¥ sub() , gsub() : Search a character vector for regular expression matches and replace that match with
another string

6

¥ regexec() : Gives you indices of parethensized sub-expressions.

References

Chapter 19 of the book ÒR programming for data scienceÓ.

7

Statistical Computing
Lecture 5: Debugging and proÞling R code

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Debugging

SomethingÕs Wrong!

R has a number of ways to indicate to you that somethingÕs not right.

¥ message: A generic notiÞcation/diagnostic message produced by themessage() function; execution of
the function continues

¥ warning : An indication that something is wrong but not necessarily fatal; execution of the function
continues. Warnings are generated by thewarning() function

¥ error : An indication that a fatal problem has occurred and execution of the function stops. Errors are
produced by the stop() function.

¥ condition : A generic concept for indicating that something unexpected has occurred; programmers
can create their own custom conditions if they want.

Try log(-1) .

Example

printmessage <- function (x) {
if (x > 0)

print ("x is greater than zero")
else

print ("x is less than or equal to zero")
invisible (x)

}

Now try printmessage(1) and printmessage(NA) . What happened? How to Þx this problem?

Solution

printmessage2 <- function (x) {
if (is.na (x))

print ("x is a missing value!") else if (x > 0)
print ("x is greater than zero") else print ("x is less than or equal to zero")

invisible (x)
}

Now try printmessage2(NA) .

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

Example

Now try the following and see what happened.

x <- log (c(- 1, 2))
printmessage2 (x)

Solution

1. allowing vector arguments.
2. vectorizing the printmessage2() function to allow it to take vector arguments.

For the Þrst solution, we check the length of the input.

printmessage3 <- function (x) {
if (length (x) > 1L)

stop (" ! x! has length > 1")
if (is.na (x))

print ("x is a missing value!") else if (x > 0)
print ("x is greater than zero") else print ("x is less than or equal to zero")

invisible (x)
}

Now try printmessage3(1:2) .

For the second solution, vectorizing the function can be accomplished easily with theVectorize() function.

printmessage4 <- Vectorize (printmessage2)
out <- printmessage4 (c(- 1, 2))

Figuring Out WhatÕs Wrong

The primary task of debugging any R code is correctly diagnosing what the problem is. Some basic questions
you need to ask are

¥ What was your input? How did you call the function?
¥ What were you expecting? Output, messages, other results?
¥ What did you get?
¥ How does what you get di!er from what you were expecting?
¥ Were your expectations correct in the Þrst place?
¥ Can you reproduce the problem (exactly)?

Debugging Tools in R

R provides a number of tools to help you with debugging your code.

¥ traceback() : prints out the function call stack after an error occurs; does nothing if thereÕs no error
¥ debug() : ßags a function for ÒdebugÓ mode which allows you to step through execution of a function

one line at a time
¥ browser() : suspends the execution of a function wherever it is called and puts the function in debug

mode
¥ trace() : allows you to insert debugging code into a function a speciÞc places
¥ recover() : allows you to modify the error behavior so that you can browse the function call stack

2

These functions are interactive tools speciÞcally designed to allow you to pick through a function. ThereÕs
also the more blunt technique of insertingprint() or cat() statements in the function.

Using traceback()

¥ The traceback() function prints out the function call stack after an error has occurred.
¥ For example, you may have a functiona() which subsequently calls functionb() which calls c() and

then d() . If an error occurs, it may not be immediately clear in which function the error occurred. The
traceback() function shows you how many levels deep you were when the error occurred.

mean(x)
traceback ()

Example

f <- function (x) {
r <- x - g(x)
r

}
g <- function (y) {

r <- y * h(y)
r

}
h <- function (z) {

r <- log (z)
if (r < 10)

r ^2
else r ^3

}

¥ Try f(-1) .
¥ Try traceback() .
¥ Looking at the traceback is useful for Þguring out roughly where an error occurred but itÕs not useful

for more detailed debugging. For that you might turn to the debug() function.

Using debug()

¥ The debug() function initiates an interactive debugger (also known as the ÒbrowserÓ in R) for a
function.

¥ With the debugger, you can step through an R function one expression at a time to pinpoint exactly
where an error occurs.

¥ The debug() function takes a function as its Þrst argument. For debugging thef() function, try
debug(f) .

¥ Now, every time you call the f() function it will launch the interactive debugger. To turn this behavior
o! you need to call the undebug() function.

Commands in debug()

The debugger calls the browser at the very top level of the function body. From there you can step through
each expression in the body. There are a few special commands you can call in the browser:

3

¥ n executes the current expression and moves to the next expression
¥ c continues execution of the function and does not stop until either an error or the function exits
¥ Qquits the browser

Example 1

Try f(-1) .

¥ While you are in the browser you can execute any other R function that might be available to you in a
regular session.

¥ You can usels() to see what is in your current environment (the function environment) and print()
to print out the values of R objects in the function environment.

¥ You can turn o! interactive debugging with the undebug() function.

Example 2

SS <- function (mu, x) {
d <- x - mu
d2 <- d ^ 2
ss <- sum(d2)
ss

}
debug(SS)
SS(1, rnorm(100))

Using recover()

¥ The recover() function can be used to modify the error behavior of R when an error occurs. Normally,
when an error occurs in a function, R will print out an error message, exit out of the function, and
return you to your workspace to await further commands.

¥ With recover() you can tell R that when an error occurs, it should halt execution at the exact point
at which the error occurred. That can give you the opportunity to poke around in the environment in
which the error occurred. This can be useful to see if there are any R objects or data that have been
corrupted or mistakenly modiÞed.

options (error = recover) ## Change default R error behavior
f (- 1)

¥ The recover() function will Þrst print out the function call stack when an error occurrs. Then, you can
choose to jump around the call stack and investigate the problem. When you choose a frame number,
you will be put in the browser (just like the interactive debugger triggered with debug()) and will have
the ability to poke around.

Summary

¥ There are three main indications of a problem/condition: message, warning , error ; only an error is
fatal

¥ When analyzing a function with a problem, make sure you can reproduce the problem, clearly state
your expectations and how the output di!ers from your expectation

¥ Interactive debugging tools traceback , debug, browser , trace , and recover can be used to Þnd
problematic code in functions

4

¥ Debugging tools are not a substitute for thinking!

ProÞling R

The real problem is that programmers have spent far too much time worrying about e"ciency in
the wrong places and at the wrong times; premature optimization is the root of all evil (or at
least most of it) in programming.

Ñ Donald Knuth

R ProÞler

¥ R comes with a proÞler to help you optimize your code and improve its performance.
¥ In generall, itÕs usually a bad idea to focus on optimizing your code at the very beginning of development.
¥ Rather, in the beginning itÕs better to focus on translating your ideas into code and writing code thatÕs

coherent and readable.
¥ The problem is that heavily optimized code tends to be obscure and di"cult to read, making it harder

to debug and revise. Better to get all the bugs out Þrst, then focus on optimizing.

What to optimize

¥ Optimizing the parts of your code that are running slowly
¥ How do we know what parts those are?! This is what the proÞler is for.
¥ ProÞling is a systematic way to examine how much time is spent in di!erent parts of a program.
¥ Often you might write some code that runs Þne once. But then later, you might put that same code

in a big loop that runs 1,000 times. Now the original code that took 1 second to run is taking 1,000
seconds to run! Getting that little piece of original code to run faster will help the entire loop.

Basic principles

¥ Design Þrst, then optimize

¥ Remember: Premature optimization is the root of all evil

¥ Measure (collect data), donÕt guess.

¥ If youÕre going to be scientist, you need to apply the same principles here!

Using system.time()

The system.time() function computes the time (in seconds) needed to execute an expression. The function
returns:

¥ user time: time charged to the CPU(s) for this expression
¥ elapsed time: Òwall clockÓ time, the amount of time that passes foryou as youÕre sitting there

The elapsed time may begreater than the user time if the CPU spends a lot of time waiting around.

Elapsed time > user time
system.time (readLines ("http://www.jhsph.edu"))

5

user system elapsed
0.042 0.006 4.513

The elapsed time may besmaller than the user time if your machine has multiple cores/processors (and is
capable of using them).

library (plyr)
library (doMC)

Loading required package: foreach

Loading required package: iterators

Loading required package: parallel

registerDoMC(cores = detectCores ())
system.time (aaply (1: 10000, 1, function (x) rnorm(1, mean =x),

.parallel = TRUE))

user system elapsed
3.715 0.766 2.465

Timing Longer Expressions

You can time longer expressions by wrapping them in curly braces within the call tosystem.time() .

system.time ({
n <- 1000
r <- numeric (n)
for (i in 1: n) {

x <- rnorm(n)
r[i] <- mean(x)

}
})

user system elapsed
0.098 0.003 0.101

If your expression is getting pretty long (more than 2 or 3 lines), it might be better to either break it into
smaller pieces or to use the proÞler. The problem is that if the expression is too long, you wonÕt be able to
identify which part of the code is causing the bottleneck.

The R ProÞler

¥ Using system.time() allows you to test certain functions or code blocks to see if they are taking
excessive amounts of time.

¥ However, this approach assumes that you already know where the problem is and can callsystem.time()
on it that piece of code.

¥ What if you donÕt know where to start?
¥ This is where the proÞler comes in handy.

The R ProÞler

¥ The Rprof() function starts the proÞler in R.
¥ In conjunction with Rprof() , we will use the summaryRprof() function which summarizes the output

from Rprof() .

6

¥ Rprof() keeps track of the function call stack at regularly sampled intervals and tabulates how much
time is spent inside each function.

¥ By default it will write its output to a Þle called Rprof.out . You can specify the name of the output
Þle if you donÕt want to use this default.

¥ Once you call the Rprof() function, everything that you do from then on will be measured by the
proÞler.

¥ The proÞler can be turned o! by passingNULLto Rprof() .

Example

Now letÕs play around some data with the proÞler running.

Rprof ()
data (diamonds, package = "ggplot2")
plot (price ~ carat, data = diamonds)
m <- lm(price ~ carat, data = diamonds)
abline (m, col = "red")
Rprof (NULL)

Using summaryRprof()

The summaryRprof() function tabulates the R proÞler output and calculates how much time is spent in
which function. There are two methods for normalizing the data.

¥ Òby.totalÓ divides the time spend in each function by the total run time

¥ Òby.selfÓ does the same as Òby.totalÓ but Þrst subtracts out time spent in functions above the current
function in the call stack.

Now try summaryRprof() and interprete the results.

Interactive Visualizations for ProÞling R Code

profvis is a tool for helping you to understand how R spends its time.

library (profvis)

profvis ({
data (diamonds, package = "ggplot2")
plot (price ~ carat, data = diamonds)
m <- lm(price ~ carat, data = diamonds)
abline (m, col = "red")

})

Note that Rstudio includes integrated support for proÞling with profvis .

Summary

¥ Rprof() runs the proÞler for performance of analysis of R code

¥ summaryRprof() summarizes the output of Rprof() and gives percent of time spent in each function
(with two types of normalization)

7

¥ Good to break your code into functions so that the proÞler can give useful information about where
time is being spent

¥ RStudio includes integrated support for proÞling with profvis

¥ C or Fortran code is not proÞled

Lab Session 4

In this lab, write your own code, enjoy the tools of debugging and proÞling and write a short report of
optimizing your code.

References

Chapters 20 and 21 of the book ÒR programming for data scienceÓ.

8

Statistical Computing
Lecture 6: Newton Method

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Optimisation in Business

Many problems in business require something to be minimized or maximized.

¥ Maximizing Revenue
¥ Minimizing Costs
¥ Minimizing Delivery Time
¥ Maximizing Financial Returns

Optimisation in Statistics

¥ Maximum Likelihood
¥ Least Squares
¥ Method of Moments
¥ Posterior Mode

Optimisation

¥ Suppose we want to Þnd a minimum or maximum of a functionf (x).
¥ Sometimesf (x) will be very complicated.
¥ Are there computer algorithms that can help?
¥ Yes!

Root Finding

Root Finding

¥ Consider the problem of Þnding the root of a function.
¥ For the function f (x), the root is the point x! such that f (x!) = 0 .
¥ An algorithm for solving this problem was proposed by Newton and Raphson nearly 500 years ago.

Newton-Raphson Method

¥ Newton-Raphson is an iterative method that begins with an initial guess of the root.
¥ The method uses the derivative of the functionf

!
(x) as well as the original function f (x).

¥ When successful, it converges (usually) rapidly, but may fail as any other root-Þnding algorithm.

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

Newton-Raphson Method

The method tries to solve an equation in the form off (x) = 0 through the iterative procedure:

xn +1 = xn !
f (xn)
f ! (xn)

.

Please think about Taylor expansion .

Stopping Rule

¥ With each step the algorithm should get closer to the root.
¥ However, it can run for a long time without reaching the exact root.
¥ There must be a stopping rule otherwise the program could run forever.
¥ Let ! be an extremely small number e.g.1 " 10" 10 called the tolerance level .
¥ If |f (x!)| < ! then the solution is close enough and there is a root atx! .

Example

¥ Now Þnd the root of f (x) = x2 ! 5 using Newton method by hand.
¥ Tell about its geometric interpretation.

Newton-Raphson Method

1. Select an initial guessx0, and set n = 0 .

2. Set xn +1 = xn ! f (x n)
f ! (x n)

.

3. Evaluate |f (xn +1)|.

1. If |f (xn +1)| < ! , then stop;
2. Otherwise setn = n + 1 and go back to step 2.

Lab Session 5

1. Write R code to Þnd the root of x2 = 5 .
2. Now use your Newton-Raphson code to Þnd the root off (x) =

!
|x|. Try initial value 0.25.

3. Now use your Newton-Raphson code to Þnd the root ofxe" x 2
= 0 .4(ex + 1) " 1 + 0 .2. Try initial values

0.5 and 0.6.

What did you learn from mistakes?

You can use D()

newton.raphson <- function (f, init.value, df = NULL, tol = 1e-5, maxiter = 1000) {
if (is.null (df)) {

df <- D(f, ! x!)
}

2

niter <- 0
diff <- tol + 1
x <- init.value
while (diff >= tol && niter <= maxiter) {

niter <- niter + 1
fx <- eval (f)
dfx <- eval (df)
if (dfx == 0) {

warning ("Slope is zero: no further improvement possible.")
break

}
diff <- - fx / dfx
x <- x + diff
diff <- abs(diff)

}
if (niter > maxiter) {

warning ("Maximum number of iterations ! maxiter ! was reached.")
}
return (list (root = x, f.root = fx, niter = niter, estim.prec = diff))

}

You can also use deriv()

newton.raphson <- function (ftn, x0, tol = 1e-9, max.iter = 100) {
Newton_Raphson algorithm for solving ftn(x)[1] == 0
we assume that ftn is a function of a single variable that returns
the function value and the first derivative as a vector of length 2
#
x0 is the initial guess at the root
the algorithm terminates when the function value is within distance
tol of 0, or the number of iterations exceeds max.iter

initialise
x <- x0
fx <- ftn (x)
iter <- 0

continue iterating until stopping conditions are met
while ((abs(fx[1]) > tol) && (iter < max.iter)) {

x <- x - fx[1] / fx[2]
fx <- ftn (x)
iter <- iter + 1
cat ("At iteration" , iter, "value of x is:" , x, " \n ")

}

output depends on success of algorithm
if (abs(fx[1]) > tol) {

cat ("Algorithm failed to converge \n ")
return (NULL)

} else {
cat ("Algorithm converged \n ")
return (x)

3

}
}

f <- expression (x ^2 - 5)
df <- deriv (f, ! x! , func = TRUE)
ftn <- function (x){

dfx <- df (x)
f <- dfx[1]
gradf <- attr (dfx, ! gradient !)[1,]
return (c(f, gradf))

}

newton.raphson (ftn, 1)

Other Examples

Now try these functions:

1. f (x) = x3 ! 2x2 ! 11x + 12, try starting values 2.35287527 and 2.35284172.
2. f (x) = 2 x3 + 3x2 + 5 , try starting values 0.5 and 0.

Learn from Mistakes

¥ Newton-Raphson does not always converge.
¥ For some functions, using some certain starting values leads to a series that converges, while other

starting values lead to a series that diverges.
¥ For other functions di!erent starting values converge to di!erent roots.
¥ Be careful when choosing the initial value.
¥ Newton-Raphson doesnÕt work if the Þrst derivative is zero.

Conclusion

¥ Why did we spend so much time on Þnding roots of an equation?
¥ IsnÕt this topic meant to be about optimization?
¥ Can we change the algorithm slightly so that it works for optimization?

Optimisation

Finding a Maximum or Minimum

¥ Suppose we want to Þnd an minimum or maximum of a functionf (x) (think about maximum likelihood
estimation).

¥ Find the derivative f
!
(x) and Þnd x! such that f

!
(x!) = 0 .

¥ This is the same as Þnding a root of the Þrst derivative. We can use the Newton Raphson algorithm on
the Þrst derivative.

4

Newton Raphson algorithm for Þnding local maxima or minima

1. Select an initial guessx0, and set n = 0 .

2. Set xn +1 = xn ! f
!
(x n)

f !! (x n)
.

3. Evaluate |f
!
(xn +1)|.

1. If |f
!
(xn +1)| < ! , then stop;

2. Otherwise setn = n + 1 and go back to step 2.

Di!erent Stopping Rules

Three stopping rules can be used.

¥ |f
!
(xn +1)| < ! .

¥ |xn ! xn " 1| < ! .
¥ |f (xn) ! f (xn " 1)| < ! .

Intuition

¥ Focus the step size! f ! (x)
f !! (x) .

¥ The signs of the derivatives control the direction of the next step.
¥ The size of the derivatives control the size of the next step.
¥ Consider the concave functionf (x) = ! x4 which has f #(x) = ! 4x3 and f ##(x) = ! 12x2. There is a

maximum at x! = 0 .

5

Role of Þrst derivative

!3 !2 !1 0 1 2 3

!1
00

!8
0

!6
0

!4
0

!2
0

0

Step Size x=!2

x

f(
x)

Step Size = 2/3

6

Role of Þrst derivative

!3 !2 !1 0 1 2 3

!1
00

!8
0

!6
0

!4
0

!2
0

0

Step Size x=!1

x

f(
x)

Step Size = 1/3

7

Role of Þrst derivative

!3 !2 !1 0 1 2 3

!1
00

!8
0

!6
0

!4
0

!2
0

0

Step Size x=1

x

f(
x)

Step Size = !1/3

Role of Þrst derivative

¥ If f ##(x) is negative the function is locally concave, and the search is for a local maximum.
¥ To the left of this maximum f #(x) > 0.
¥ Therefore ! f ! (x)

f !! (x) > 0.
¥ The next step is to the right.
¥ The reverse holds iff #(x) < 0.
¥ Large absolute values off #(x) imply a steep slope. A big step is needed to get close to the optimum.

The reverse hold for small absolute value off #(x).

8

Role of Þrst derivative

¥ If f ##(x) is positive the function is locally convex, and the search is for a local minimum.
¥ To the left of this maximum f #(x) < 0.
¥ Therefore ! f ! (x)

f !! (x) > 0.
¥ The next step is to the right.
¥ The reverse holds iff #(x) > 0.
¥ Large absolute values off #(x) imply a steep slope. A big step is needed to get close to the optimum.

The reverse hold for small absolute value off #(x).

Role of second derivative

!3 !2 !1 0 1 2 3

!1
00

!8
0

!6
0

!4
0

!2
0

0

Second Derivative

x

f(
x)

f''(x)=!12 x2

f''(x)=!96 x2

9

Role of second derivative

¥ Together with the sign of the Þrst derivative, the sign of the second derivative controls the direction of
the next step.

¥ A larger second derivative (in absolute value) implies a larger curvature.
¥ In this case smaller steps are need to stop the algorithm from overshooting.
¥ The opposite holds for a small second derivative.

Multidimensional Optimization

Functions with more than one input

¥ Most interesting optimization problems involve multiple inputs.
Ð In determining the most risk e"cient portfolio the return is a function of many weights (one for

each asset).
Ð In least squares estimation for a linear regression model, the sum of squares is a function of many

coe"cients (one for each regressor).
¥ How do we optimize for functions f (x) where x is a vector?

Derviatives

¥ NewtonÕs algorithm has a simple update rule based on Þrst and second derivatives.
¥ What do these derivatives look like when the function isy = f (x) where y is a scalar andx is a d " 1

vector?

First derivative

Simply take the partial derivatives and put them in a vector

"y
" x

=

"

#
#
#
#
$

!y
!x 1
!y

!x 2
...

!y
!x d

%

&
&
&
&
'

This is called the gradient vector.

An example

The function y = x2
1 ! x1x2 + x2

2 + ex 2 has gradient vector

"y
" x

=
(

2x1 ! x2

! x1 + 2x2 + ex 2

)
.

10

Second derivative

Simply take the second order partial derivatives. This will give a matrix

"y
" x" x# =

"

#
#
#
#
#
$

! 2 y
!x 2

1

! 2 y
!x 1 !x 2

á á á ! 2 y
!x 1 !x d

! 2 y
!x 2 !x 1

! 2 y
!x 2

2
á á á ! 2 y

!x 2 !x d

...
...

. . .
...

! 2 y
!x d !x 1

! 2 y
!x d !x 2

á á á ! 2 y
!x 2

d

%

&
&
&
&
&
'

.

This is called the Hessian matrix.

An example

The function y = x2
1 ! x1x2 + x2

2 + ex 2 has Hessian matrix

"y
" x" x# =

(
2 ! 1

! 1 2 + ex 2

)

NewtonÕs algorithm for multidimensional optimization

We can now generalise the update step in NewtonÕs method:

xn + 1 = xn !
(

" 2f (x)
" x" x#

) " 1 "f (x)
" x

Now write code to minimise y = x2
1 ! x1x2 + x2

2 + ex 2 .

Maximum likelihood Estimate for linear models

Assume you want to make a regression model

yi = #0 + #1xi + ! i , where ! i # N (0, 1).

¥ How do we estimate the parameters?
¥ Write down the log likelihood function with respect to the unknown parameters.
¥ Write down the gradient for the log likelihood function.
¥ Write down the Hessian for the log likelihood function.
¥ Use your newton function to obtain the best parameter estimate.

Optimizing Using NewtonÕs Method

Generate some data
beta0 <- 1
beta1 <- 3
sigma <- 1
n <- 1000
x <- rnorm(n, 3, 1)
y <- beta0 + x * beta1 + rnorm(n, mean =0, sd = sigma)
plot(x, y, col = ! blue ! , pch = 20)

11

Make the log normal likelihood function
func = function (beta) {

sum((y - beta[1] - beta[2] * x) ^2)
}

grad = function (beta) {
matrix (c(sum(- 2 * (y - beta[1] - beta[2] * x)), sum(- 2 *

x * (y - beta[1] - beta[2] * x))), 2, 1)
}

hess = function (beta) {
matrix (c(2 * length (x), 2 * sum(x), 2 * sum(x), 2 * sum(x ^2)),

2, 2)
}

The optimization
source ("./RCode/newton.R")
optimOut <- newton(function (beta) {

list (func (beta), grad(beta), hess(beta))
}, c(- 4, - 5))
beta0Hat <- optimOut[1]
beta1Hat <- optimOut[2]
yHat <- beta0Hat + beta1Hat * x

Plot
plot (x, y, pch = 20, col = "blue")
points (sort (x), yHat[order (x)], type = "l" , col = "red" , lwd = 2)

0 1 2 3 4 5 6

5
10

15
20

x

y

12

Comparison with OLS

myLM <-lm(y ~ x)
myLMCoef <-myLM$coefficients
yHatOLS <- myLMCoef[1] + myLMCoef[2] * x
plot (x, y, pch = 20, col = "blue")
points (sort (x), yHat[order (x)], type = "l" , col = "red" , lwd = 10)
points (sort (x), yHatOLS[order (x)], type = "l" , col = "blue" ,

lty = "dashed" , lwd = 2, pch = 20)

0 1 2 3 4 5 6

5
10

15
20

x

y

Lab Session 7

Use NewtonÕs method to Þnd the maximum likelihood estimate for the coe"cients in a logistic regression.
The steps are:

1. Write down likelihood function.
2. Find the gradient and Hessian matrix.
3. Code these up in R.
4. Simulate some data from a logistic regression model and test your code.

References

Chapters 10 and 12 of the book ÒIntroduction to ScientiÞc Programming and Simulation Using RÓ.

13

Statistical Computing
Lecture 7: Quasi-Newton Methods

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Quasi-Newton Methods

¥ One of the most di!cult parts of the Newton method is working out the derivatives especially the
Hessian.

¥ However methods can be used to approximate the Hessian and also the gradient.
¥ These are known as Quasi-Newton Methods.
¥ In general they will converge slower than pure Newton methods.

The BFGS Algorithm

Introduced over several papers by Broyden, Fletcher, Goldfarb and Shanno. It is the most popular Quasi-
Newton algorithm.

¥ Recall Newton iteration:
xn +1 = xn ! f

!!
(xn)! 1f

!
(xn).

¥ Is there some matrix to replacef
!!
(xn) or f

!!
(xn)! 1?

¥ Can we use a revised iteration:xn +1 = xn ! B ! 1
n f

!
(xn), where Bn is simpler to compute but still

allows the algorithm to converge quickly?

The BFGS Algorithm

¥ The idea with Quasi-Newton is to Þnd a solutionBn to the problem

f
!
(xn) ! f

!
(xn ! 1) = Bn (xn ! xn ! 1).

¥ Let yn = f
!
(xn) ! f

!
(xn ! 1) and sn = xn ! xn ! 1, one updating procedures forBn :

Bn = Bn ! 1 +
yn y

!

n

y!

n sn
!

Bn ! 1sn s
!

n B
!

n ! 1

s!

n Bn ! 1sn
.

The L-BFGS-B Algorithm

¥ The R function optim() also has a variation called L-BFGS-B.
¥ The L-BFGS-B uses less computer memory than BFGS and allows for box constraints.

Box Constrains

¥ Box constraints have the form
li " xi " ui , #i.

¥ In statistics this can be very useful. Often parameters are constrained.
Ð Variance must be greater than 0.
Ð For a stationary AR(1), coe!cients must be between -1 and 1.
Ð Weights in a portfolio must be between 0 and 1.

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

optim() in R

¥ optim() requires at least two inputs.
Ð Initial values
Ð The function that needs to be optimized

¥ By default it minimises a function.

¥ A function that computes the gradient vector can also be provided.

¥ The optimization method can be set (choices include BFGS, L-BFGS-B and Nelder-Mead) .
¥ Lower and upper bounds can be set through the arguments lower and upper if the L-BFGS-B method

is used.

optim() in R

¥ Further arguments can be passed in an argument calledcontrol .
¥ Some things that can be included in this list are

Ð Maximum number of iterations (maxit)
Ð Information about the algorithm (trace)
Ð How often to display information about the algorithm (REPORT)

optim() in R

¥ The result of optim can be saved in an object that is a list containing
Ð The value of the function at the turning point (value)
Ð The optimal parameters (par)
Ð Useful information about whether the algorithm has converged (convergence)

¥ For all algorithms convergence = 0 if the algorithm has converged (slightly confusing).

Lab Session 8

Use optim() to carry out maximum likelihood for the Logistic regression model.

References

Chapter 3.3 of the book ÒAdvanced Statistical ComputingÓ.

2

https://bookdown.org/rdpeng/advstatcomp/

Statistical Computing
Lecture 8: Derivative Free Methods

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Motivation

Discontinuous Functions

¥ The Newton Method requires Þrst and second derivatives.
¥ If derivatives are not available the they can be approximated by Quasi-Newton methods.
¥ What if the derivatives do not exist?
¥ This may occur if there are discontinuities in the function.

Business Example

¥ Suppose the aim is to optimize income of the business by selecting the number of workers.
¥ In the beginning adding more workers leads to more income for the business.
¥ If too many workers are employed, they may be less e!cient and the income of the company goes down.

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

Business Example

0 50 100 150 200

!2
0

2
4

6
8

Continuous Function

Workers

In
co

m
e

Business Example

¥ Now suppose that there is a tax that the company must pay.
¥ Companies with less than 50 workers do not pay the tax.
¥ Companies with more than 50 workers do pay the tax.
¥ How does this change the problem?

2

Business Example

0 50 100 150 200

!4
!2

0
2

4

Discontinuous Function

Workers

In
co

m
e

The Nelder Mead Algorithm

¥ The Nelder Mead algorithm is robust even when the functions are discontinuous.
¥ The idea is based on evaluating the function at the vertices of an n-dimensional simplex where n is the

number of input variables into the function.
¥ For two dimensional problems the n-dimensional simplex is simply a triangle, and each corner is one

vertex
¥ In general there are n + 1 vertices.

3

A 2-dimensional simplex

0.0 0.5 1.0 1.5 2.0

!6
!4

!2
0

2
4

6

Nelder Mead

x1

x 2

Step 1: Evaluate Function

¥ For each vertex x j evaluate the function f (x j)
¥ Order the vertices so that

f (x1) ! f (x2) ! . . . ! f (xn +1).

¥ Suppose that the aim is to minimize the function, then f (xn +1) is the worst point.
¥ The aim is to replacef (xn +1) with a better point.

4

A 2-dimensional simplex

0.0 0.5 1.0 1.5 2.0

!6
!4

!2
0

2
4

6

Evaluate Functions

x1

x 2

f=4

f=1

f=6

Step 2: Find Centroid

¥ After eliminating the worst point xn +1 , compute the centroid of the remaining n points

x0 =
1
n

n!

j =1

x j .

¥ For the 2-dimensional example the centroid will be in the middle of a line.

5

Find Centroid

0.0 0.5 1.0 1.5 2.0

!6
!4

!2
0

2
4

6

Centroid

x1

x 2

!

Step 3: Find reßected point

¥ Reßect the worst point around the centroid to get the reßected point.
¥ The formula is:

x r = x0 + ! (x0 " xn +1).

¥ A common choice is! = 1 .
¥ In this case the reßected point is the same distance from the centroid as the worst point.

6

Find Reßected Point

0.0 0.5 1.0 1.5 2.0

!6
!4

!2
0

2
4

6

Reflection

x1

x 2

!

7

Find Reßected Point

0.0 0.5 1.0 1.5 2.0

!6
!4

!2
0

2
4

6

Reflection

x1

x 2

!

Three cases

1. f (x1) ! f (x r) < f (xn)
¥ xr is neither best nor worst point

2. f (x r) < f (x1)
¥ xr is the best point

3. f (x r) # f (xn)
¥ xr is the worst point

8

Case 1

In Case 1 a new simplex is formed withxn +1 replaced by the reßected pointx r . Then go back to step 1.

0.0 0.5 1.0 1.5 2.0

!6
!4

!2
0

2
4

6

Case 1

x1

x 2

!

f=4

f=1

f=6

f=2

9

Case 1

0.0 0.5 1.0 1.5 2.0

!6
!4

!2
0

2
4

6

Case 1

x1

x 2

!

Case 2

In Case 2,x r < x1. A good direction has been found so we expand along that direction

xe = x0 + " (x r " x0).

A common choice is" = 2

10

Case 2

0.0 0.5 1.0 1.5 2.0

!6
!4

!2
0

2
4

6

Case 2

x1

x 2

!

f=4

f=1

f=6

f=0

11

Case 2

0.0 0.5 1.0 1.5 2.0

!6
!4

!2
0

2
4

6

Case 2

x1

x 2

!

Choosing the Expansion Point

¥ Evaluate f (xe).
¥ If f (xe) < f (x r):

Ð The expansion point is better than the reßection point. Form a new simplex with the expansion
point

¥ If f (x r) ! f (xe):
Ð The expansion point is not better than the reßection point. Form a new simplex with the reßection

point.

12

Keep Expansion Point

0.0 0.5 1.0 1.5 2.0

!6
!4

!2
0

2
4

6

Case 2

x1

x 2

!

f=4

f=1

f=6

f=0

f=!1

13

Keep Relection Point

0.0 0.5 1.0 1.5 2.0

!6
!4

!2
0

2
4

6

Case 2

x1

x 2

!

f=4

f=1

f=6

f=0

f=3

Case 3

Case 3 implies that there may be a valley betweenxn +1 and xr so Þnd the contracted point. A new simplex
is formed with the contraction point if it is better than xn +1

xc = x0 + #(xn +1 " x0)

A common choice is# = 0 .5

14

Case 3

0.0 0.5 1.0 1.5 2.0

!4
!2

0
2

4
6

Case 3

x1

x 2

!

f=4

f=1

f=6

f=5

15

Valley

Find Contraction point

0.0 0.5 1.0 1.5 2.0

!4
!2

0
2

4
6

Case 3

x1

x 2

!

16

New Simplex

0.0 0.5 1.0 1.5 2.0

!4
!2

0
2

4
6

Case 3

x1

x 2

!

f=4

f=1

f=6

f=3

Shrink

If f (xn +1) ! f (xc) then contracting away from the worst point does not lead to a better point. In this case
the function is too irregular a smaller simplex should be used. Shrink the simplex

x i = x1 + $(x i " x1)

A popular choice is $ = 0 .5.

17

Egg Carton

Contraction Point is worst

0.0 0.5 1.0 1.5 2.0

!4
!2

0
2

4
6

Case 3

x1

x 2 f=4

f=1

f=6

f=9

18

New Simplex

0.0 0.5 1.0 1.5 2.0

!4
!2

0
2

4
6

Case 3

x1

x 2

Summary

¥ Order points
¥ Find centroid
¥ Find reßected point
¥ Three cases:

1. Case 1 (f (x1) ! f (x r) < f (xn)): Keep xr

2. Case 2 (f (x r) < f (x1)): Find xe.
Ð If f (xe) < f (x r) then keepxe

Ð Otherwise keepxr

3. Case 3 (f (x r) # f (xn)): Find xc

19

Ð If f (xc) < f (xn +1) then keepxc

Ð Otherwise shrink

Coding Nelder Mead

Your task

¥ Find the minimum of the function f (x) = x2
1 + x2

2
¥ Use a triangle with vertices (1, 1), (1, 2), (2, 2) as the starting simplex
¥ DonÕt worry about using a loop just yet. Try to get code that just does the Þrst iteration.
¥ DonÕt worry about the stopping rule yet either

Use pseudo-code

Stopping Rule for Nelder Mead

¥ As Nelder Mead gets close to (or reaches) the minimum, the simplex gets smaller and smaller.
¥ One way to know that Nelder Mead has converged is by looking at the volume of the simplex.
¥ To work out the volume requires some understanding between the relationship between matrix algebra

and geometry.

Stopping Rule for Nelder Mead

¥ Choose the vertexxn +1 (although choosing any other vertex will also work)

20

¥ Build the matrix ÷X = (x1 " xn +1 , x2 " xn +1 , . . . , xn " xn +1)

¥ The volume of the simplex is 1
2 |det(÷X)|

Why?

0.0 0.5 1.0 1.5 2.0

!2
!1

0
1

2
3

4

Volume

x1

x2

x3

21

Traslate

!0.5 0.0 0.5 1.0 1.5

!3
!2

!1
0

1
2

3

Volume

x1 ! x3

x2 ! x3

22

Determinant=Area of Trapezoid

!0.5 0.0 0.5 1.0 1.5

!3
!2

!1
0

1
2

3

Volume

23

Triangle=Half Trapezoid

!0.5 0.0 0.5 1.0 1.5

!3
!2

!1
0

1
2

3

Volume

Alternative formula

Some of you may have learnt the formula for the area of a triangle as:

1
2

"
"
"
"det

#
x1 x2 x3

1 1 1

$ "
"
"
"

The two approaches are equivalent.

24

Nelder Mead in optim()

¥ Nelder Mead is the default algorithm in the R function optim()
¥ It is generally slower than Newton and Quasi-Newton methods but is more stable for functions that are

not smooth.
¥ Including the argument control=list(trace, REPORT=1) will print out details about each step of the

algorithm.
¥ Slight di"erent terminology is used for example ÔexpansionÕ is called ÔextensionÕ

Summary

¥ This is the end of the optimization topic.
¥ You should now be familiar with

Ð NewtonÕs Method
Ð Quasi Newton Method
Ð Nelder Mead

¥ Hopefully you also improved your coding skills!

Summary

Some important lessons:

¥ If you can evaluate derivatives and Hessians then do so when implementing Newton and Quasi-Newton
methods.

¥ If there are discontinuities in the function then Nelder Mead may work better.
¥ In any case the best strategy is to optimize using more than one method to check that results are

robust.
¥ Also pay special attention to starting values. A good strategy is to check that results are robust to a

few di"erent choices of starting values.

25

Statistical Computing
Lecture 9: Eigenanalysis

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Why numerical linear algebra?

¥ Di!erence between linear algebra andapplied linear algebra.
¥ Think about linear algebra in Statistics.
¥ In curve Þtting.
¥ In image processing.
¥ In signal processing.
¥ etc.

We need to know numerical techniques!

Eigenanalysis

¥ In general, a matrix acts on a vector by changing both its magnitude and its direction.
¥ However, a matrix may act on certain vectors by changing only their magnitude, and leaving their

direction unchanged (or reversing it).
Ð these vectors are the eigenvectors of the matrix
Ð the scaling factor is the eigenvalue.

Example

¥ Think about the linear transformation y = Ax , where

A =
!

2 0
0 3

"
, x =

!
cos!
sin !

"
, y =

!
y1

y2

"
.

¥ What is its geometric interpretation?

¥ What happens when! = !
4 ?

¥ When ! = !
2 ?

¥ When ! = 0?

Example

¥ What if A is not diagnal?
¥ How to Þnd its eigenvalues and eigenvectors?
¥ If A is a real symmetric matrix

Ð Only real eigenvalues
Ð n distinct linearly independent eigenvectors
Ð pairwise orthogonal
Ð A = Q!Q T

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

¥ When A is diagonalisable?
¥ If a diagonalisation doesnÕt exist, there is always a triangularisation via Schur Decomposition:

A = QSQ T .

¥ Let us revisit together the properties of eigenvalues and eigenvectors.

What does eigenanalysis help to do?

¥ LetÕs try to understand whatAx = " x is really asking.
¥ Can we Þnd a pair of" and x such that when a matrix A is applied to x, it doesnÕt change the direction

and just scales the vector?
¥ If we can Þnd such a pair, then everytime we do something withAx in some mathematical operation,

we can replace it with " x .

What does eigenanalysis help to do?

¥ Consider A =
!

5 ! 1
! 2 4

"
and x =

!
1

! 1

"
.

Ð what if we now want to calculate A 20 x?
Ð what if we now want to calculate A ! 1x?

¥ Computationally, we would rather work with scalars than matrices and this is what eigenanalysis helps
us do.

¥ But what if we are not lucky enough to be asked to multiply a matrix by one of its eigenvectors?

Advantages of eigenanalysis

¥ It enables us to replace a matrix with a scalar when we have the opportunity to change our coordinate
system to the eigenvectors of a matrix.

¥ We can express any vector in terms of this new coordinate system.
¥ We can use the fact that Ax = " x to simplify calculations.

Application of Eigenanalysis: Google

How to know page rank?

¥ How does the search engine know which pages are the most important?
¥ Google assigns a number to each individual page, expressing its importance.
¥ This number is known as the PageRank and is computed via the eigenvalue problemAw = "w , where

A is based on the link structure of the Internet.

GoogleÕs pagerank

¥ Suppose we have a set of webpagesW , with |W | = n as the number of webpages.
¥ We deÞne a connectivity (adjacency) matrixA as follows: Ai,j is 1 if there is a hyperlink from pagei

to page j and 0 otherwise.
¥ Typically A is huge (27.5 billion x 27.5 billion in 2011), but extremely sparse (lots of zero values)

2

A small example

¥ Consider the small set of Þve webpages.

¥ The connectivity matrix is

A =

#

$
$
$
$
%

0 1 0 1 1
0 0 1 1 1
1 0 0 1 0
0 0 0 0 1
0 0 1 0 0

&

'
'
'
'
(

A small example

¥ The ranking of page i is proportional to the sum of the rankings of all pages that link to i : r 4 =
#(r 1 + r2 + r 3).

¥ So this is a system ofn = 5 linear equations:

r = #A T r, or AT r = (1 /#)r.

¥ The ranking vector is treated like a probability of relevance, so we need to then rescale so that! n
i =1 r i = 1 .

¥ Go to R and compute pageranks.

What you need to realise for now

¥ Finding the eigenvalues and eigenvectors of a massive matrix is computationally challenging though
(donÕt try to solve the characteristic polynomial!)

¥ and you will learn numerical techniques later.

3

Statistical Computing
Lecture 10: Singular Value Decomposition

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Non-square matrices

¥ Recall that if the matrix A is square (real or complex) then a diagonalisation may exist.
Ð This is clearly very useful for easy calculation of many important problems as we saw last week.
Ð If a diagonalisation doesnÕt exist, then there is always a triangularisation via Schur Decomposition.

¥ But non-square matrices donÕt have eigenvalues, so what can we do?
¥ You are about to learn the most useful diagonal decomposition that works for all matrices: Singular

Value Decomposition.

Singular values

¥ Singular values are the square roots of the eigenvalues ofAT A which is square and symmetric
¥ The singular vectors (u and v) come in a pair for each singular value! , such that

Av = !u.

Generalising Eigen-Decomposition

¥ Eigendecomposition involves only one eigenvector for each eigenvalue (including multiplicities), stored
in an orthogonal matrix Q, with eigenvalues on the diagonal of the matrix! , so that A = Q"Q T .

¥ We can generalise this now that we have singular vectorsu and v for each singular value! .

Singular Value Decomposition (SVD)

For A ! R m ! n , there exists orthogonal matrices

U = [u1, á á á, um] ! R m ! m

and
V = [v1, á á á, vn] ! R n ! n

such that
UT AV = " = diag{ ! 1, á á á, ! p} ! R m ! n ,

with p = min { m, n} and ! 1 " á á á " ! p " 0.

Rearranging, we have
A = U" V T

.

SVD

Try svd() in R.

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

Some properties of SVD

¥ ! i are singular values ofA.
¥ The non-zero singular values ofA are the square roots of the non-zero eigenvalues of bothAT A and

AA T .
¥ The rank of a matrix is equal to the number of non-zero singular values.
¥ The condition number measures the degree of singularity ofAT A:

=
max singular value
min singular value

.

Summary

¥ SVD: Decomposition of any matrix A.
¥ It works by eigendecomposition ofAT A (or AA T) which is square and symmetric.
¥ We are now able to associate an orthogonal diagonal form with every matrix, and easily calculate useful

properties of the matrix.
¥ Over the next few lectures we will look at the fantastic applications of SVD.

Lab session

Peek into SVD and PCA in R, illustrate their relationship and write a short report.

2

Statistical Computing
Lecture 11: Basic Applications of SVD

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Applications of SVD

¥ In data compression, we start with a matrix A that contains perfect data, and we try to Þnd a
(lower-rank) approximation to the data that seeks to capture the principal elements of the data.

Ð we sacriÞce only the less important parts that donÕt degrade data quality too much, in order to
gain compression.

¥ In noise Þltering, we start with a matrix A that contains imperfect data, and we try to Þnd a (lower-rank)
approximation to the data that seeks to capture the principal elements of the data.

Ð we give up only the less important parts that are typically noise.
¥ So both these tasks are related, and rely on the SVD to Þnd a suitable lower-ranked approximation to

a matrix

Matrix Approximation

¥ Recall that the SVD of a matrix A in R m ! n decomposes the matrix into

A = U! V T =
!

U1 U2
"

#
D

0

$
!

V T
1 V T

2

"
= UT

1 DV T
1

where D = diag{ ! 1, á á á, ! r } ! R r ! r with " r > 0 for r = rank(A).

¥ A can also be expressed as a sum of outer products, with each sum being a rank 1 matrix of dimension
m " n

A = ! r
i =1 " i uu vT

i = ! 1u1vT
1 + á á á+ ! r ur vT

r .

¥ We can truncate this sum when we feel that the singular values are so small that they are not contributing
much.

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

SVD components

Matrix Approximation Error

¥ So if we truncate the sum afterk singular values, then we are approximatingA with Ak

Ak = ! k<r
i =1 " i uu vT

i = ! 1u1vT
1 + á á á+ ! k uk vT

k .

¥ The error in the approximation is " k+1 .

¥ We have rank(Ak) = k < r = rank(A).

¥ By approximating A with Ak , we have saved memory:

Ð A requires us to storem " n numbers
Ð Ak requires us to store ??? numbers?

Ð SigniÞcant savings for large matrices, and/or smallk.

Image Compression

Image Compression

¥ Suppose we have a grayscale image (128" 128 pixels).
Ð We can use a matrix to represent this image.

¥ If we have a colour image, it has three matrices, with the same size as the image. Each matrix represents
a color value that comprises the RGB color scale.

¥ Each pixel is represented by an integer from 0-255.
¥ Next, we can decompose the matrix by SVD.
¥ By eliminating small singular values, we can approximate the matrix.

Ð Choose the value ofk for the low-rank approximation Ak .
Ð Plotting the singular values might help identify where there is a noticeable drop in signiÞcance

2

Reconstructing approximated image

¥ Suppose we have chosen the value ofk = number of singular values we wish to retain. - We can generate
a new image matrix by expandingA using the SVD (Þrst k singular values only).

¥ If you want to use colour images, do it for R, G, B matrices separately and then reassemble.

Data compression in R

Here are four images with rank 286, 200, 116 and 32. How many numbers to store for each of them?

Plot of singular values

0 50 100 150 200 250

0
50

10
0

15
0

Index

S
in

gu
la

r
va

lu
es

Lab session

¥ Like in todayÕs lecture, take a high resolution image of yourself, and produce a sequence of low rank
approximations.

¥ How much can you save?

Noise reduction

Noise reduction

¥ The SVD also has applications in digital signal processing
¥ The central idea is to let a matrix A represent the noisy signal, compute the SVD, and then discard

small singular values ofA.

3

¥ It can be shown that the small singular values mainly represent the noise, and thus the rankk matrix
Ak represents a Þltered signal with less noise.

Application to Signal Separation

¥ Suppose we haveP observed signalsmi (t) which are linear combinations of r source signalssi (t),
corrupted by noise signalsni (t). We have a time series of data fromT time periods

¥ This can be written as:
mi (t) = ! i 1s1(t) + á á á+ air sr (t) + ni (t),

where t = 1 , á á á, T and i = 1 , á á á, P.
¥ Write the equivalent matrix representation.

SVD of signal matrix M

¥ We can decomposeM using SVD: M = U! V T .
¥ If the signal compared to the noise is su!ciently strong, we are likely to Þnd clear distinction between

the singular values due to the signal and those due to noise

U = (Us, Un), ! =
#

! s

! n

$
, V T =

#
Vs

Vn

$

Results of noise reduction

library (bootSVD)
set.seed (1)
Y <- simEEG(n = 100, centered = TRUE, propVarNoise = 0.3 , wide = TRUE)
svdY <- svd(Y)
par (mfrow = c(2, 2))
for (j in c(3, 20, 50, 100)) {

a = svdY$u[, 1: j] %*%diag (svdY$d[1: j]) %*%t (svdY$v[, 1: j])
plot (a[1,], type = "l" , xlab = "" , ylab = "signal" , main = paste ("r = " ,

j, sep = ""))
}

4

0 200 400 600 800

!0
.1

0
0.

05
0.

15

r = 3
si

gn
al

0 200 400 600 800

!0
.2

0.
0

0.
2

r = 20

si
gn

al
0 200 400 600 800

!0
.3

0.
0

0.
2

0.
4

r = 50

si
gn

al

0 200 400 600 800

!0
.2

0.
0

0.
2

0.
4

r = 100

si
gn

al

Curve Þtting

Curve Þtting

¥ Curve Þtting seeks to approximate the data by Þtting a curve that minimises the sum of the squared
residual errors.

¥ Over-determined linear system.
¥ No exact solutions.
¥ We Þnd an approximation.

Linear regression

For a linear regression,
y = X # + $, %# N (0, !) .

what is its OLS solution?

Numerical Issues

¥ Numerically, there can be problems with solving for# via the normal equations.
Ð The inverse ofX T X might not exist
Ð It is not computationally e!cient to invert it for large dimensions
Ð X T X maybe ill-conditioned

¥ The SVD can help us by providing a numerically stable pseudo-inverse, and the opportunity to identify
(through the singular values) any ill-conditioning.

5

Pseudo-inverse

Recall that the SVD of a matrix A in R m ! n decomposes the matrix into

A = U! V T =
!

U1 U2
"

#
D

0

$
!

V T
1 V T

2

"
= U1DV T

1

where D = diag{ ! 1, á á á, ! r } ! R r ! r with " r > 0 for r = rank(A).

¥ The pseudo-inverse, or generalised inverse, ofA can always be calculated, even ifA is not invertible.

A+ = V1D " 1UT
1

¥ A+ is n " m.

Linear regression

For
y = X # + $, %# N (0, !) ,

the solution is

= X + y = V1D " 1UT
1 y = ! r

i =1
vi uT

i y
" i

.

A small singular value means trouble. A lower rank approximation should be more reliable.

An example of using generalised inverse

X <- matrix (c(1, 2, 4, 8, 3, 6, 9, 12, - 11, - 22, - 32, - 40), 4,
3)

y <- 2 * X[, 1] - 7 * X[, 2] + 1e-04 * (rnorm(4) - 0.5)
library (MASS)
beta <- ginv (X) %*%y # write your own function to find generalised inverse
t (y - X %*%beta) %*%(y - X %*%beta)

[,1]
[1,] 3.845924e-08

Lab session

¥ Use generalised inverse to solve a linear regression problem, and compare with thelm() function in R.

6

Statistical Computing
Lecture 12: Numerical Algorithms for Eigenanalysis

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

Finding eigenvalues and eigenvectors

¥ So far, we have only considered the characteristic polynomial approach to Þnd the eigenvalues of a
matrix

¥ Once we have the eigenvalues, we have been solving the homogeneous equation to Þnd the corresponding
eigenvectors

¥ The process is: Þnd the eigenvalues Þrst, and then Þnd the corresponding eigenvectors

Practicalities

¥ Unfortunately, this is an impractical approach for n > 4
¥ We will bypass the characteristic polynomial and now take a di!erent approach

Ð The Power Method
Ð QR decomposition

The Power Method

The Power Method

¥ The Power Method Þnds the dominant eigenvalue! 1 and corresponding dominant eigenvectorv1 of a
matrix A

¥ The dominant eigenvalue is the one with the largest modulus (absolute value for real eigenvalues)
¥ The Power Method is an iterative approach that generates a sequence of scalars that converge to! 1

and a sequence of vectors that converge tov1

¥ The Power Method works well (converges quickly) when the dominant eigenvalue is clearly dominant

The Power Method

¥ It works by starting with an initial vector x0, transforming to x1 = Ax 0, transforming x1 to x2 = Ax 1,
etc.

x1 = Ax 0; x2 = Ax 1 = A2x0; á á á; xk = Ak x0.

- As k ! " , xk ! v1.

Proof of convergence

¥ Assume! 1 is the dominant eigenvalue.
¥ |! 1| > |! 2| > á á á> |! n |.
¥ Assume there aren independent eigenvectorsv1, á á á, vn .
¥ x0 = c1v1 + á á á+ cn vn .

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

¥ xk =?

Estimation of eigenvalues

So once we have an eigenvector estimate we can quickly estimate the corresponding eigenvalue

Ax = !x # xT Ax = !x T x # ! =
xT Ax
xT x

=
xT Ax
||x||2

= qT Aq.

Practical Power method (normalised)

Since the components ofxk just get larger and larger as the Power Method iterates, and we really just want
to know the direction of v1 (not its magnitude), we normalise eachxk .

So the Power Method can be summarised as:

¥ Set initial vector q0 = x0/ (||x0||).

¥ Repeat for k

Ð Compute xk = Aqk≠1

Ð Normalise qk = xk / ||xk ||
Ð Estimate ! k = qT

k Aqk

Comments

¥ The Power method is not expected to converge if the matrix A is not diagonalisable
¥ Convergence rate depends on how dominant! 1 is
¥ Google uses it to calculate the PageRank and Twitter uses it to show users recommendations of who to

follow.
¥ And for non-dominant eigenvalues/vectors?

Lab session

Now use The Power Method to redo your google pagerank problem

QR decomposition

Eigenvalue Revealing Decomposition

¥ It would be nice if we could get our matrix A into an eigenvalue revealing decomposition like
Schur decompositionA = QSQT

¥ So we can read o! the eigenvalues (all of them) from the diagonal
¥ We will do it iteratively using QR decomposition: A = QR
¥ QR decomposition is not an eigenvalue revealing decomposition, but it will help us with our aim
¥ QR decomposition can be done with Gram-Schmidt Orthogonalisation (GSO) algorithm

2

GSO algorithm

Any set of basis vectors(a1, a2, á á á, an) can be transformed to an orthonormal basis(q1, q2, á á á, qn) by:

GSO ! QR

QR

For any m $ n matrix A, we can expressA as A = QR.

¥ Q is m $ m, orthogonal
¥ R is m $ n, upper triangular

For (non-square) tall matrices A with m > n , the last (m %n) rows of R are all zero, so we can expressA as:

A = QR = (Q1, Q2)
!

R1

0

"
= Q1R1.

QR algorithm

This algorithm computes an upper triangular matrix S and a unitary matrix Q such that A = QSQT is the
Schur decomposition ofA.

1. Set A0 := A.
2. for k = 1 , 2, á á á,

¥ Ak≠1 = Qk≠1Rk≠1.
¥ Ak := Rk≠1Qk≠1.

3. Set S := AŒ.

Lab session

¥ Go to R code up QR algorithm.

¥ Use QR algorithm on A =
!

1 2
3 4

"
.

3

Solution to Ax = b by QR

If we have A = QR or (even better) the economy formA = Q1R1, then the linear system Ax = b can be
easily solved:

Ax = b

(Q1R1)x = b

R1x = QT
1 b

and x is found through back substitution.

Computation of the SVD by QR

Just as we can useA = QR to avoid calculating AT A in the normal equations, we can also use QR
decomposition to solve the eigenvalue problems forAT A and AA T to obtain the SVD of A.

Lab session

¥ Use QR decomposition to write your ownsvd function in R.
¥ For linear regression, compare svd, pseudo-inverse and QR decomposition in R.

4

Statistical Computing
Lecture 13: Image Recognition Based on SVD

Yanfei Kang yanfeikang@buaa.edu.cn
School of Economics and Management Beihang University http://yanfei.site

ClassiÞcation of handwritten digits

Read images in R

The image matrix for training sample. 256x1707
azip <- read.table("azip.dat")

The true digits given in the training sample. length = 1707
dzip <- as.numeric(read.table("dzip.dat"))

The testing image matrix. 256x2007
testzip <- read.table("testzip.dat")

The true digits for the testing sample. length = 2007
dtest <- read.table("dtest.dat")

Display the image
i <- 120
image(matrix(azip[, i], ncol = 16)[, 16:1], col = gray(255:0/255))

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

The naive method

The naive method is to check the distance from each test image to the mean of training image.

The mean of training sample of a single digit
digits <- 0:9 # The possible digits in the US postal code
img.mean <- matrix(0, 256, length(digits))

for (i in digits) {
idx <- (i == dzip) # the location indicator for the ith digit
imgi <- azip[, idx, drop = FALSE]
imgi.mean <- rowMeans(imgi)
img.mean[, i + 1] <- imgi.mean

}

Plot the mean image
par(mfrow = c(2, 5))
for (i in 1:10) {

image(matrix(img.mean[, i], ncol = 16)[, 16:1], col = gray(255:0/255))
}

2

0.0 0.6

0.
0

0.
4

0.
8

0.0 0.6

0.
0

0.
4

0.
8

0.0 0.6

0.
0

0.
4

0.
8

0.0 0.6

0.
0

0.
4

0.
8

0.0 0.6

0.
0

0.
4

0.
8

0.0 0.6

0.
0

0.
4

0.
8

0.0 0.6

0.
0

0.
4

0.
8

0.0 0.6

0.
0

0.
4

0.
8

0.0 0.6

0.
0

0.
4

0.
8

0.0 0.6

0.
0

0.
4

0.
8

The naive method

¥ Now it is the time to check the testing sample to the mean of the training sample. We pick the Þrst
Þve testing digits.

¥ We Þnd the Þrst, third and the Þfth are rather easy to classify by eyeballs. But the second and fourth
ones are particular di!cult.

Sketch a distance function to compute the Euclidean
distance between two matrices in row wise.
rdist <- function(X, Y) {

dim.X <- dim(X)
dim.Y <- dim(Y)
sum.X <- matrix(rowSums(X^2), dim.X[1], dim.Y[1])
sum.Y <- matrix(rowSums(Y^2), dim.X[1], dim.Y[1], byrow = TRUE)
dist0 <- sum.X + sum.Y - 2 * tcrossprod(X, Y)
out <- sqrt(dist0)
return(out)

}

For an unknown testing digit image, compare the distance to
the means
test.sample <- 1:5

Let ! s first plot those testing image
par(mfcol = c(ceiling(length(test.sample) /5), 5)) # five columns

for (i in test.sample) {
image(matrix(testzip[, i], ncol = 16)[, 16:1], col = gray(255:0/255))

}

3

0.0 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Calculate the distance from testing sample to the mean in
the training sample.
img.dist <- rdist(t(testzip[, test.sample]), t(img.mean))

The classification results by the naive method
apply(img.dist, 1, which.min) - 1

V1 V2 V3 V4 V5
9 2 3 2 6

The SVD method

¥ We pick the digit 9 as an example in this method and plot the Þrst ten singular image from the SVD
decomposition.

¥ We Þrst use four bases, which yields the correct speciÞcation as follows. We also tries to classify other
digits which gives robust results. But when we increase more basis function, there comes the risk of
overÞtting.

¥ It maybe not a good idea to use all the bases but one can always pick up the bases according to the
Þrst kth largest eigen values.

The SVD method

Compute the singular matrix of a single digit in the
training sample
digit <- 9

Subtract the matrix for that digit
img.mat <- azip[, digit == dzip, drop = FALSE]
img.matSVD <- svd(img.mat)

4

Plot the singular matrix under different basis.
par(mfrow = c(2, 5))
for (i in 1:10) {

image(matrix(img.matSVD$u[, i], 16)[, 16:1], col = gray(255:0/255),
main = paste("singular image " , i, sep = ""))

}

0.0 0.6

0.
0

0.
4

0.
8

singular image 1

0.0 0.6

0.
0

0.
4

0.
8

singular image 2

0.0 0.6
0.

0
0.

4
0.

8

singular image 3

0.0 0.6

0.
0

0.
4

0.
8

singular image 4

0.0 0.6

0.
0

0.
4

0.
8

singular image 5

0.0 0.6

0.
0

0.
4

0.
8

singular image 6

0.0 0.6

0.
0

0.
4

0.
8

singular image 7

0.0 0.6

0.
0

0.
4

0.
8

singular image 8

0.0 0.6

0.
0

0.
4

0.
8

singular image 9

0.0 0.6

0.
0

0.
4

0.
8

singular image 10

Testing based on SVD

Do the least square method with different basis and find
the minimal residuals.

The testing digit matrix
test.idx <- 2
image(matrix(testzip[, test.idx], 16)[, 16:1], col = gray(255:0/255),

main = paste("Testing digit"))

5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Testing digit

resid.norm <- matrix(NA, 10, 1, dimnames =list(0:9, "resid"))
for (i in 0:9) {

img.mat <- azip[, i == dzip, drop = FALSE]
img.matSVD <- svd(img.mat)
basis.max <- ncol(img.matSVD$u)
basis.max <- 4
resid.norm[i + 1,] <- norm(matrix(lm(testzip[, test.idx] ~

0 + img.matSVD$u[, 1:basis.max]) $resid), "F")
}
resid.norm

resid
0 11.815495
1 12.536173
2 11.388341
3 12.706473
4 12.141602
5 12.926655
6 9.455279
7 12.577303
8 12.061615
9 12.551339

6

The SVD method

¥ We will Þnd out when we overÞt (see the plot of classiÞcation success as a function of the number of
basis vectors.)

¥ To see this, we loop over all testing observations and number of bases from 1 to 88, and then count the
correct speciÞcation numbers.

7

Statistical Computing
Lecture 14: SVD in Text Mining

Yanfei Kang yanfeikang@buaa.edu.cn

School of Economics and Management Beihang University http:// yanfei.site

What is text mining?

Raw human written text ∆ Structured information

¥ The biggest di!erence between text mining and general data analysis is that it deals with text data,
instead of numeric values.

¥ Sometimes text mining is called ÔNatural Language Processing (NLP)Õ, especially in computer science.
¥ Most text mining methods are based on word frequency in real world.

What do you usually see in text mining?

Concepts in text mining

¥ Corpus
– a collection of documents (e.g., a collection of di!erent job description documents)

¥ Word segment
– segment each text into words
– stopwords: common words that generally do not contribute to the meaning of a sentence, at least

for the purposes of information retrieval and natural language processing. These are words such as
the and a. Most search engines will Þlter out stopwords from search queries and documents in
order to save space in their index.

¥ DocumentTermMatrix
– Each row is a document, while each column shows word frequencies of the corresponding word.
– This is the very basic data structure for text mining.

¥ TermDocumentMatrix
¥ Text clustering

– Group similar documents together according to their similarities.
¥ Topic models

– Find topics which the corpus is talking about.

SVD in text mining

Latent Semantic Analysis (LSA)

¥ Extract relationships between the documents and terms assuming that terms that are close in meaning
will appear in similar (i.e., correlated) pieces of text.

¥ LSA leverages a singular value decomposition (SVD) factorization of a term-document matrix to extract
these relationships.

A = U ! V T .

¥ U contains the eigenvectors of the term correlations,AAT .

1

mailto:yanfeikang@buaa.edu.cn
http://yanfei.site

¥ V contains the eigenvectors of the document correlations,AT A.

LSA to the Rescue!

¥ LSA often remediates the curse of dimensionality problem in text analytics:
– The matrix factorization has the e!ect of combining columns, potentially enriching signal in the

data.
– By selecting a fraction of the most important singular values, LSA can dramatically reduce

dimensionality.
¥ SVD is e!ective and is a staple of text analytics pipelines!

LSA applications - Term similarity

2

LSA applications - Document similarity

3

	Objectives
	Overview of R
	What is R?
	Installation
	Design of the R System

	R Nuts and Bolts
	Basic Operations
	R Objects
	Numbers
	Attributes
	Vectors
	Matrices
	Lists
	Factors
	Data Frames
	Names

	Getting Data in and out of R
	Reading and Writing Data

	Subsetting R objects
	How to Subset?
	Subsetting a Vector
	Subsetting a Matrix
	Subsetting Lists
	Subsetting Nested Elements of a List
	Extracting Multiple Elements of a List
	Removing NA Values
	Review of this lecture

	Lab Session 1
	Read and Write Data in R
	References
	Chapters 3-10 of the book R programming for data science.

